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1 Introduction

ICS (Integrated Canonizer and Solver) is a decision procedure developed at SRI International.
It efficiently decides formulas in a useful combination of theories, and it provides an API that
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makes it suitable for use in applications with highly dynamic environments such as proof search or
symbolic simulation.

The theory decided by ICS is a quantifier-free, first-order theory of equality with terms built
from the combination of

U uninterpreted functions,
LA linear arithmetic (real and integer),
NL power products (nonlinear arithmetic),
P products,
COP coproducts (direct sums),
ARR functional arrays,
BV fixed-sized bitvectors,
PSET propositional sets, and
APP functional abstraction and application.

This combination is particularly interesting for many applications in the realm of software and
hardware verification, since the combinations of a multitude of datatypes occur naturally in system
specifications and the use of uninterpreted function symbols has proven to be essential for many
real-world verifications.

The core of ICS is a congruence closure procedure for the theory of equality and disequal-
ity with both uninterpreted and interpreted function symbols. The concepts of canonization and
solving have been extended to include inequalities over linear arithmetic terms. ICS is capable of
deciding sequents such as

• x+2 = y |- f(a[x:=3][y-2]) = f(y-x+1)

• f(y-1)-1 = y+1, f(x)+1 = x-1, x+1 = y |- false

• f(f(x)-f(y)) <> f(z), y <= x, y >= x+z, z > 0 |- false

These formulas contain uninterpreted function symbols such asf and interpreted symbols drawn
from the theories of arithmetic and the functional arrays. The list of interpreted theories above
is open-ended in the sense that new theories can be added to ICS as long as they are canonizable
and algebraically solvable. The modular design of ICS—both the underlying algorithms and their
implementation—supports such extensions.

One of the main problems in employing decision procedures effectively is due to the fact that
verification conditions usually depend on large contexts. In addition, these contexts change fre-
quently in applications such as symbolic simulation or backtracking proof search. Consequently,
decision procedure systems that are effective in these domains must not only be able to build up
contexts incrementally but they must also support efficiently switching between a multitude of
contexts. ICS meets these criteria in that all of its main algorithm work incrementally and the data
structures for representing contexts are persistent, that is, operations on data structures do not alter
the previous values of data andundooperations are therefore for free.

ICS is implemented inOcaml which offers satisfactory run-time performance, efficient garbage
collection, and interfaces well with other languages such as C.

There is a well-defined API for manipulating ICS terms, asserting formulas to the current
database, switching between databases, and functions for canonizing terms. This API is packaged
as a
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• a C library,

• anOcaml library, and

• a CommonLisp interface.

The C library API, for example, has been used to connect ICS with PVS, and both an interaction
and a batch processing capability have been built using this API.

The efficiency and scalability of ICS in processing formulas, the richness of its API, and its
ability for fast context-switching make it possible to use it as a black box for discharging veri-
fication conditions not only in a theorem proving context but also in a multitude of applications
like static analysis, abstract interpretation, extended type checking, symbolic simulation, model
checking, or compiler optimization.

1.1 Availability

For academic, non-commercial use ICS2.0 is available free of charge under a license agreement

http://ics.csl.sri.com/fm-license.pdf

with SRI. ICS is also an integral part of PVS 310. The complete sources and documentation of
ICS are available at

ics.csl.sri.com

Binaries for many popular hardware architectures and operating systems including Linux, Mac
OSX, Solaris, and Windows XP can also be found there.

1.2 Organization

This document describes the interfaces and implementation aspects of the ICS decision procedures.

2 Installation

Before trying to compile ICS on your prefered hardware architecture and operating system one
might try one of the ICS binaries provided in the download section atics.csl.sri.com. Compi-
lations should only be necessary for developers or if ICS is used on a “nonstandard” platform.

Distribution. The file ics2.0.tar.gz can be downlowded fromics.csl.sri.com. Unpack
this file using

> tar zxvf ics2.0.tar.gz
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This creates a directory./ics with the following files and subdirectories.
Makefile.in : Template for generatingMakefile.
fm-license.pdf : Noncommercial license.
bin/ : Binaries
configure : Configuration script
lib/ : Archives and shared object files
README : Short installation guide
doc/ : Documentation files
obj/ : Object files
sat/ : Sources for propositional SAT solver (in C++)
src/ : Source files for core ICS (in Ocaml and C)
ics : Shell script for invoking ICS interactor

Installation Requirements. ICS is written mainly inOcaml, and it uses uses arbitrary precision
rational numbers from the GNU multi-precision library (GMP). To compile ICS one needs to
install:

• Ocaml version 3.06 or later. Freely available athttp://caml.inria.fr.

• GNU MP version 4.1 or later. This package is freely available athttp://www.swox.com/
gmp/.

Installation.

1. The configuration script generates aMakefile from theMakefile.in.

> ./configure [--with-gmp=/path/to/gmp] [--prefix=/path/to/installation]

Theprefix option specifies the path for installing ICS binaries (prefix defaults to/usr/local/bin.
The optionalwith-gmp option is used to specify the path to a particular GMP library. Config-
ure tries to find an appropriategmp package, but this automatic search is somewhat unreliable
and might fail on some computer systems. In this case, you have to locate an appropriate
gmp and run configure with thewith-gmp option.

2. Now, make compiles ICS on your machine.

> ./make

Binaries are placed in./bin/$(ARCH)/ and the libraries in./lib/$(ARCH)/, whereARCH
is the architecture guessed by the configuration script.

C compilers on some operating systems such asgcc on OS X are not able to build dy-
namic libraries using the-shared option. In these cases it is necessary to edit the generated
Makefile and disable the creation oflibics.so manually.
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3. The build directory is./obj/$(ARCH)/, and the generated binary and byte code are put in
./bin/$(ARCH)/. The binaries are installed at the location specified by theprefix option
to configure above using the following command.

> make install

3 The ICS interactor

The interactor permits processing formulas interactively and to explore the database. We give an
overview of the capabilities of ICS using various little examples.

The interactor is started with./ics in the ICS home directory.

> ics
ICS 2.0 (Experimental, August 10 2003): Integrated Canonizer and Solver.
Copyright (c) 2003 SRI International.
Type ’help help.’ for help about help, and ’Ctrl-d’ to exit.

ics>

The ‘ics>’ is the prompt and ICS is ready to interpret your commands. All commands are termi-
nated by a ’.’. Help about available commands and the syntax of input is obtained using thehelp
command.

help - Display all commands
help <term> - Display definition of nonterminal<term>
help assert - Display description of commandassert

3.1 ICS in action

ICS can either be used in batch, interactive, or in server mode. Here we demonstrate some of the
capabilities of ICS using its interactive mode. ICS maintains astatewhich can be manipulated
and queried by a series of command. Most importantly, theassert command extends the current
logical state with a new fact. The following command, for example, adds an equality over terms
built from the the variablex and the uninterpreted function symbolf.

ics> assert f(f(f(x))) = f(x).
:ok s1

It adds this fact to the current logical, which can be queried using thectxt command.

ics> ctxt.
:val {f(f(f(x))) = f(x)}

In addition, theassert command generates a fresh name, heres1, for the extended state and keeps
this association in a symbol table.
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ics> symtab.
:val empty |-> state({})

s1 |-> state({f(f(f(x))) = f(x)})

Now, asserting the equalityf(f(f(x))) = f(x) to the current logical state yields:valid, since
indeed this equality logically follows from the previously asserted equality using congruence clo-
sure.

ics> assert f(f(f(f(f(x))))) = f(x).
:valid {f(x) = f(f(f(x)))}

In this case, the current state is unchanged. ICS also returns a subset of the asserted equalities,
the so-calledjustification, from which the validity of the asserted atom follows. Such a justifi-
cation is not necessarily minimal. The generation of dependencies can be disabled by using the
-dependencies flag when calling the ICS interactor.

Validity of equalities is established in ICS usingcanonization. For example, canonizing the
left-hand and the right-hand side of the equality above both yields the (internally generated) vari-
ablev!1.

ics> can f(x).
:term v!1
:justification {}
ics> can f(f(f(f(f(x))))).
:term v!1
:justification {f(x) = f(f(f(x)))}

The second result ofcan is a justification for the equality between the argument and the resulting
term. Since the canonical forms of these terms are identical in the current context, the equality
f(f(f(x))) = f(x) holds indeed. Simplification of atoms is performed using thesimplify
command.

ics> simplify f(x) = f(f(f(f(f(x))))).
:atom tt
:justification {f(x) = f(f(f(x)))}

Processing of new facts usingassert is done by building up an internal representation, which
can be queried using theshow command. The current state after processingf(f(f(x))) = f(x),
for example, is obtained by introducing names for all subterms in this equality.

ics> show.
:state
v: [v!1 |-> {v!3}]
u: {v!1 = f(x), v!2 = f(v!1), v!3 = f(v!2)}
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Thus,f(f(f(x))) equalsf(f(v!1)), f(v!2), v!3, and, finally,v!1. Thev part of the state above
represents the variable equalityv!1 = v!3 with v!1 thecanonicalrepresentative of the generated
equivalence class, whereas theu part consists of equalitesx = f(...) with x a variable, and
f(...) a flat term with only variables as arguments. Notice that ICS does not keep the left-hand
side of equations inu in canonical form. Also, equations in theu part are not necessarily in solved
form, that is, an equation of the formx = f(x) may be added.

ICS supports also a number of interpreted theories in the combination with uninterpreted func-
tion symbols. Let’s first reset the current context to the empty context.

ics> reset.
:unit
ics> assert z = f(x - y).
:ok s1

Here,x - y is interpreted as the difference betweenx andy in the theory oflinear arithmetic.
Besides the variable equalitiesv and the setu of uninterpreted equalities, the resulting logical state
also contains a seta of linear arithmetic equalities.

ics> show.
:state
v:[z |-> {v!2}]
u: {v!2 = f(v!1)}
la: {v!1 = -1 * y + x}

Since the termf(x - y) in the input equality contains both the uninterpreted function symbolf
and the interpreted function symbol-, it is rewritten asf(v!1) with v!1 = -y + x, with v!1 a
fresh variable. In contrast to equalities inu, equality sets for interpreted theories are always in
solvedform, that is, a variable on the left-hand side does not occur on any right-hand side. Now,
x = z + y is asserted to states1 by solving it for the largest—in some given ordering—variable
y, and deducing thatv!1 is equal toz. Now, v!1 is replaced withz in right-hand sides ofu,
and, since the non-canonicalv!1 does not occur in any of the equality sets anymore, the variable
equality betweenv!1 andz can safely been forgotten.

ics> assert x = z + y.
:ok s2
ics> show.
:state
v:[z |-> {v!2}] with: [z |-> real]
u: {v!2 = f(z)}
la: {y = x + -1 * z}

Asserting the disequality-y <> -(x - f(f(z)) yields unsatisfiability.
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ics> assert -y <> -(x - f(f(z))).
:unsat {-1 * x + f(f(z)) <> -1 * y, x = y + z, z = f(-1 * y + x)}

That is, the conjunction of the facts in the current context with this disequality has been shown
to be unsatisfiable. The current state is unchanged in this case. This inconsistency is detected by
canonization, since the canonical forms of-y and-(x - f(f(z))) are identical in contexts2.

ics> can -y.
:term -1 * x + z
:justification {x = y + z}
ics> can -(x - f(f(z))).
:term -1 * x + z
:justification {x = y + z, z = f(-1 * y + x)}

Besides arithmetic, ICS includes other theories such as the theory of products, functional ar-
rays, coproducts, or bitvectors, and the combination of the theory of tuples and coproducts is used
to describe abstract datatypes such as binary trees. The following shows an example for the combi-
nation of linear arithmetic, the theory arrays with function updatea[i:=x] and lookupa[i], and
uninterpreted functions.

ics> reset.
:unit
ics> assert x+2=y.
:ok s1
ics> assert f(a[x:=3][y - 2]) = f(y - x +1).
:valid {y = 2 + x}

The next example demonstrates the combination of linear arithmetic with S-expressions built from
the pairing functioncons(.,.) and the first and second projectioncar(.) andcdr(.), and
uninterpreted functions.

ics> reset.
:unit
ics> assert 2 * car(x) - 3 * cdr(x) = f(cdr(x)).
:ok s1
ics> assert f(cons(4 * car(x) - 2 * f(cdr(x)), y)) = f(cons(6 * cdr(x), y)).
:valid {-3 * cdr(x) + 2 * car(x) = f(cdr(x))}

Again, variables are introduced for abstracting terms and the states1 also contains an equality sets
for the theory of productsp.

ics> show.
:state
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u: {v!3 = f(v!1)}
la: {v!3 = 2 * v!2 + -3 * v!1}
p: {v!1 = cdr(x),
v!2 = car(x)}

So far, we have only dealt with equalities and disequalities, but constraints over inequalities
with arithmetical operations appear in almost all verification conditions from simple sequential
programs over reactive, real-time, and hybrid systems. It is crucial to tightly integrate equality and
inequality reasoning in that equalities are propagated to all known inequalities, and the inequality
reasoner generates all possible equalities. In ICS, we achieve such an efficient integration using
slack variables to reduce problems about inequalities to equality reasoning and simple constraint
propagation. For example, the equalityx <= y + 2 is reduced to the equalityx - y - 2 = k!1
with k!1 a newly generated, non-negativeslack variable. This equality is solved for the largest
variabley and asserted to the equality seta.

ics> reset.
:unit
ics> assert x <= y + 2.
:ok s1
ics> show.
:state
la: {y = -2 + x + k!1}

Now, the inequalityy <= z + 4 is rewritten as the nonnegativity constraint6 + z + -1 * x +
-1 * k!1 >= 0 and a new slack variablek!2 is introduced to express this constraint in terms of
an equality, which is solved for the largest variablez.

ics> assert y <= z + 4.
:ok s2
ics> show.
:state la: {y = -2 + x + k!1, z = -6 + x + k!2 + k!1}

The inequalityz + 6 <= x is reduced to the nonnegativity constraint6 + z + -1 * x >= 0,
and6 + z + -1 * x = k!3, with k!3 and the equality is solved and merged into states2 to
obtains3.

ics> assert z + 6 <= x.
:ok s3
ics> show.
:state
la: {y = -2 + x + k!1, z = -6 + x + -1 * k!2}

In effect, the implied equalitiesx = y + 2 andx = z + 6 are respected by the canonizer.
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ics> can x.
:val x
:justification {}

ics> can y + 2.
:val x
:justification {2 + y + -1 * x >= 0, 4 + z + -1 * y >= 0, -6 + -1 * z + x >= 0}

ics> can z + 6.
:val x
:justification {2 + y + -1 * x >= 0, 4 + z + -1 * y >= 0, -6 + -1 * z + x >= 0}

One distinguishing feature of ICS is its management of dynamics contexts. In the example
above, all intermediate states are maintained in a symbol table.

ics> symtab.
:symtab [

empty |-> [];
s1 |-> [2 + y + -1 * x >= 0];
s2 |-> [4 + z + -1 * y >= 0; 2 + y + -1 * x >= 0];
s3 |-> [-6 + -1 * z + x >= 0; 4 + z + -1 * y >= 0; 2 + y + -1 * x >= 0]

]

Most commands can access a state directly through its name in the symbol table. For example, the
logical context of the second state is obtained using the commandctxt@s2.

ics> ctxt@s2.
:val {-4 + -1 * z + y<=0, -2 + -1 * y + x<=0}

Names are also used for asserting facts to specific contexts. The following command, for example,
extends the states3 with the disequalityx <> 2.

ics> assert@s3 x <> 2.
:ok s4

Now, s4 is the current state, buts3 can be restored to be the current state using

ics> restore s2.

Thus, the ICS interface includes the management of dynamic contexts, which is important for
using it as a verification backend in symbolic simulation or proof search.

Dynamic contexts are also used in extending the core ICS as described above with a SAT
solver for deciding the satisfiability of Boolean combinations of equalities and inequalities. Such
a decision procedure is available as the commandsat. Obviously, the following Boolean formula
is unsatisfiable (| denotes disjunction,& is conjunction, and brackets[, ] are used for grouping.
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ics> sat [x = 1 | x = 4] & x > 5.
:unsat

In case such a propositional formula is satisfiable, a conjunction of atoms is returned for implicitly
describing aset of satisfying assignments.

ics> sat [x = 1 | x = 2 | x = 3] & x > 1.
:sat s5
:model [-1 + x > 0; x = 3]

Here, all assignments tox satisfying both-1 + x > 0 andx = 3, describe models for the input
formula. Here, there is obviously only one possible assignent, and the description is not mini-
mal. In addition, a new context, of names5, is created for these set of assignments. Using only
propositional variables, thesat command reduces to a Boolean satisfiability solver.

ics> sat p & [~p | r].
:sat s6
:model [r |-> true; p |-> true]

3.2 The Command Language

The ICS command language realizes aask/tell interface to a context consisting of known facts.
Each command is followed by a ’.’.

Asserting facts.

assert [@<ident>] <atom>,...,<atom>

An assert atm adds the atomatm to the current context. There are three possible outcomes:

1. atom is inconsistent with respect to the current context. In this case,assert leaves the
current context unchanged and outputs:unsat on the standard output. In addition, ajustifi-
cation in terms of an inconsistent subset of the current context is output if the generation of
justifications is enabled.

2. atomis valid in the current context. Again, the the current context is left, and now:valid
is output.

3. Otherwise, in caseatomhas neither been shown to be valid nor inconsistent in the current
context, the current context is modified to include new information obtained fromatom. In
addition, a new name is generated for this context and a symbol table entry is added for this
name. The result is of the form:ok si.
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Notice that the result:ok does not necessarily mean that the database is indeed consistent, since the
language accepted by ICS is undecidable. As long as one restricts oneself to a decidable fragment
(such as the union of convex Shostak theories) of the ICS input language,:ok can be interpreted
to meansatisfiable. For nonconvex theories such as functional arrays and linear integer arithmetic,
thesplit command can be used for case splitting. In contrast, a result:valid indicates that the
current atom is indeed valid in the current context, and:unsat indicates that the current context
conjoined with the currently asserted atom is indeed unsatisfiable.

assert@s atm works as explained above but the atom is asserted to the contexts in the current
symbol table, andassert@s atm1,...,atm asserts the conjunction of atomsatm1 to contexts.
Examples:Asserting the equalitiesf(v) = v andf(u) = u - 1 yields new contexts of names1
ands2. Only after assertingu = v is a contradiction detected.

ics> assert f(v) = v.
:ok s1
ics> assert f(u) = u - 1.
:ok s2
ics> assert u = v.
:unsat {v = f(v), u = v, -1 + u = f(u)}

Names of context such ass1 may also be used to address contexts in the symbol table as in
assert@s1 below.

ics> assert x = y.
:ok s1
ics> assert y = z.
:ok s2
ics> assert@s1 y = 2.
:ok s3
ics> symtab s3.
:state v:[x |-> {y}] la: {x = 2}
ics> ctxt.
:atoms [x = y; y = 2]

See Also:symtab3.2,

Canonization.

can <term>

For a termt, can t returns a term, which is acanonicalrepresentative of the equivalence class of
t as induced by the atoms in the current context. If the generation of dependencies is enabled, then
also a justification of the equality betweent andcan t is returned. There are no side effects.
See Also:simplify3.2
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Simplification.

simplify <atom>

simplify a returns an atom equivalent tob in the current context. If proofmode is enabled, then,
in addition, a justification of this equivalence is returned.See Also:can3.2

Logical Context.

ctxt [@<ident>]

ctxt returns the set of atoms asserted in the current logical context, andctxt@s returns the set
of asserted atoms in state ’s’ from the symbol table. These atoms are not necessarily in canonical
form.

Term Definition.

def <ident> := <term>

Extend the symbol table with a definition<ident> for term<term>. In such a context, variable
<ident> is always macro-expanded to<term>, but different occurrences oftermare structure-
shared. Also,<ident> may occur in<term>, since the expansion is not performed recursively.
Examples:def x := y + z

Disequalities.

diseq [@<ident>] <term>

Returns a list of variables known to be disequal to<term> in the context<ident> or the current
context if<ident> is not specified. In addition, in proof generation mode, justifications for each
disequality are returned

Exit.

exit

Exit the ICS interactor. Alternatively,Ctrl-D can be used.

Clearing current logical context.

forget .

Resets the current logical context to the empty context. In contrast toreset, all other ICS data
structures are left unchanged.
Examples:
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ics> assert x = y.
:ok s1
ics> ctxt.
:val {x = y}
ics> forget.
:unit
ics> ctxt.
:val {}

See Also:reset3.2, symtab3.2, forget3.2

Finds in solution sets.

find [@<ident>] <th> <term>

If the equalityx = t is, in the current context, in the equality set for theory<th>, saya, thenfind
a x returnst and otherwisex. The addressingfind@s1 a x may be used to address the solution
set for, say, the arithmetic theory in the contexts1 in the symbol table.
See Also:inv3.2

Help.

help [<command> | < <nonterminal> >]

Help about ICS interactor commands and syntactic categories.
Examples.
help Display all commands
help help Display this message
help <term> Display definition of nonterminal<term>
help assert "Display description of commandassert

Inverse find in solution sets.

inv [@<ident>] <th> <term>

If the equalityx = t is, in the current context, in the specified solution set for the specified equality
theory, saya, theninv a x returnst and otherwiseNone. The addressinginv@s1 a x may be
used to address the solution set for, say, the arithmetic theory in the contexts1 in the symbol table.
See Also:find3.2

Definition of Propositions.

prop <ident> := <prop>

Extend the symbol table with a definitionvarfor the propositionproposition. In such a context,
variablevaris always expanded topropositionbut different occurrences ofpropositionare structure-
shared. see also commanddef. This command fails if there is already avarin the symbol table.
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Resetting.

reset

Reinitializes all internal data structures including setting the current logical context to the empty
context and the symbol table is emptied out.

Restoring logical contexts.

restore <ident>

Updating the current logical state to be the state named byident in the symbol table.
See Also:symtab3.2

Removing symbol table entries

remove <ident>

Remove the symbol table entry corresponding to<ident>.
See Also:symtab3.2

Saving the current logical context.

save [<ident>]

Adding a symbol table entryvarfor the current logical state.
See Also:symtab3.2, forget3.2,

Satisfiability Solver.

sat [@<ident>] <prop>

A satisfiability solver for propositional formulas over atoms. Returns:unsat if the formulas has
been shown to be unsatisfiable or:sat together with an assignment to the Boolean variables and
the truth values of the atoms in a satisfying assignment. In addition, a name is added in the symbol
table for the state corresponding to the conjunction of the atoms in a satisfying assignment, but the
current logical state is unchanged.

Examples:Literals might be just Boolean variables and the satisfibility of the Boolean probem
(| is disjunction,& is conjunction,# is exclusive or, and̃ is negation) is tested as follows.

ics> sat x | y | [z & ~x] # y.
:sat(s1) [x |-> true]

Notice that brackets[ and] as in[z & x̃] are used for structuring propositional formulas. The
values for the variablesy andz aredon’t caresand therefore not explicitly stated. In addition to
Boolean formulas, the commandsat also handles Boolean formulas over atomic constraints.

ics> sat x > y & [y = 2 # ~[x <> 3]].
:sat(s1) [-1 * y + x>0; y <> 2; x = 3]

Now, each possible assignment tox and y, which satisfy the given constraints, is a candidate
satisfying assignment of the input formula.
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Signature Declaration.

sig <ident> : <sig>

Declare a variable<ident> to be interpreted over the set of bitvectors of widthi or the integers
or the reals. For example, after declaringsig x : int, every occurrence of the variablex is in-
terpreted to mean the variablex{int}, that is the variable of namex with associated interpretation
domainint. Notice that ICS treatsy andy{int} as different variables. Bitvector variables have to
be declared before use, when using infix operators, since context information is used for inferring
parameters when applying infix bitvector operators.

Sigmatization.

sigma <term>

Computes the normal form of a term using theory-specific canonizers for terms in interpreted
theories and some builtin simplifications for uninterpreted terms. This command leaves the current
state unchanged.
See Also:can3.2, simplify3.2

Displaying the context.

show [@<ident>] [<th>]

Displays the current logical state which consists of a

Variable equalities. Thev part represents a set of equalities over variables. For example

v:[a |-> {a, b}; x |-> {x, y, z}]

says thata andb are equivalent and thatx, y, andz are equivalent. The canonical represen-
tatives each the two non-trivial equivalence classes area andx.

Variable disequalities. Thed part is just a conjunction of disequalities over variables

d:[y <> x; z <> y]

The set of variables known to be disequal can also be obtained using thediseq command.

Variable constraints are conjunctions are sign interpretations for internally generated slack vari-
ables. This information is used, for example, by thesign command.

Theory-specific solution sets.A theory-specific solution set is a conjunction of equalitiesx =
t with x a variable andt a non-variable term with function symbols in only one theory.
Variables in terms might also be internally generated variables of the formx!i. For all
interpreted theories, the equations in a solved form are actually solved in that variablesx on
a rhs do not occur in any of the lhs. The solution sets can be queried with thefind, inv, and
theuse command.

16



Slack equalities. Are equalities between internally generated slack variables. These equalities
can not be manipulated or queried with any other command.

See Also:ctxt3.2,

Solving.

solve <th> <term> = <term>

Theory-specific solver for input equality. Returns either a solved list of equalities with variables
on the lhs which is, in the given theory, equivalent to the input equality or:unsat if the input
equality is unsatisfiable. There are solvers for linear arithmetic (la), tuples (t), bitvectors (bv),
and propositional sets.

Examples.The first example demonstrates solving in the theoryla of linear arithmetic.

ics> solve la x + 2 = y - 3.
:subst [y |-> 5 + x]

Solving in the theoryp of pairs might introduce fresh variables sucht!2 below.

ics> solve p car(x) = cons(u, v).
:subst [x |-> cons(cons(u, v), cdr(x))]

The following illustrates solving in the theory of bitvectors.

ics> sig x2 : bitvector[2].
:unit
ics> sig x3 : bitvector[3].
:unit
ics> solve bv x2 ++ 0b10 = 0b10 ++ x2.
:val [x2 = 0b10]
ics> solve bv x3 ++ 0b10 = 0b10 ++ x3.
:unsat

Symbol Table.

symtab [<ident>]

symtab display the current symbol table, andsymtab vardisplays the symbol table entry associated
with var. Such an entry might either be a logical context entry, a term definition, a definition of a
proposition, or a signature entry for domain restrictions of variables.
Examples:
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ics> assert x = y.
:ok s1
ics> symtab.
:symtab

empty |-> []
s1 |-> [x = y]

ics> def x := y + z.
:unit
ics> prop z := a | b.
:unit
ics> symtab.
:symtab [

empty |-> [];
x |-> z + y;
s1 |-> [y = x];
z |-> a | b]

ics> sig x : bitvector[2].
:error Name x already in table

ics> sig b : bitvector[2].
:unit
ics> sig q : int.
:unit
ics> symtab.
:symtab[

empty |-> [];
x |-> z + y;
s1 |-> [y = x];
z |-> a | b; b |-> bitvector[2];
q |-> int]

Trace.

trace <levels>

Tracing facility is used mainly for debugging purposes. However, usingtrace rule might some-
times be useful to analyze which facts are internally being asserted by ICS. Similarly, trace levels
such asv, d, la, can be used to trace updates on internal data structures.
See Also:untrace3.2,

Disable tracing.
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untrace [<levels>]

Disable specified trace levels. If no trace levels are given, all tracing is disabled.
See Also:trace3.2,

Usually, the capabilites of ICS are not accessed through the interactor but rather through its
application programming interface. Currently, we support interfaces for C, Fortran, Lisp, and
Ocaml. We first describe the Ocaml interface, since the interfaces for the other programming
languages are automatically generated from this one.

4 Module Ics : Application programming interface.

The ICS API includes function for

• asserting formulas to a logical context,

• switching between different logical contexts, and

• manipulating and normalizing terms.

There are two sets of interface functions. Thefunctional interface provides functions for
building up the main syntactic categories of ICS such as terms and atoms, and for extending logical
contexts usingIcs.process[4], which is side-effect free.

In contrast to this functional interface, thecommand interface manipulates a global state
consisting, among others, of symbol tables and the current logical context. TheIcs.cmd_rep[4]
procedure, which reads commands from the current input channel and manipulates the global struc-
tures accordingly, is used to implement the ICS interactor.

Besides functions for manipulating ICS datatypes, this interface also contains a number of
standard datatypes such as channels, multiprecision arithmetic, tuples, and lists.

val version : unit -> string

Returns this ICS’s version number.

Parameters

The following flags determine the currentconfigurationof ICS.

val set_profile : bool -> unit

Enable profiling of used time and memory resources for selected functions. Used mainly
for debugging.

val set_pretty : string -> unit

Determine pretty-printing.

• mixfix enables pretty-printing in mixfix and infix form,

• prefix disables mixfix and infix printing, and

• sexpr enables printing in terms of S-expressions of the form(:op arg1. . . argn).
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val set_compactify : bool -> unit

set_compactify false disables garbage collection of internally generated variables
(defaulttrue).

val set_assertion_frequency : int -> unit

set_assertion_frequency n determines how often (frequency) the SAT solver sends
(the relevant) information to ground decision procedures.

val set_verbose : bool -> unit

Usingset_verbose true, the SAT solver reports all kinds of statistics and progress
reports (defaultfalse).

val set_remove_subsumed_clauses : bool -> unit

Internal configuration of the SAT solver.

val set_validate : bool -> unit

With set_validate set totrue, the SAT solver validates all generated assignments and all
justifications for inconsistencies.

val set_polarity_optimization : bool -> unit

Internal configuration of the SAT solver.

val set_clause_relevance : int -> unit

Internal configuration of the SAT solver.

val set_cleanup_period : int -> unit

Internal configuration of the SAT solver.

val set_num_refinements : int -> unit

Internal configuration of the SAT solver.

val set_statistic : bool -> unit

Enable/Disable SAT solver to print statistics (defaultfalse).

val set_show_explanations : bool -> unit

Display explanations generated for SAT solver onFormat.err_formatter when flag is
enabled.

val set_justifications : bool -> unit

Print justifications of internally xgenerated facts (defaultfalse).

val set_integer_solve : bool -> unit
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Enable/disable integer solver (defaulttrue). Disabling the integer solver makes the
procedure incomplete, but (usually) faster.

val set_proofmode : string -> unit

ICS supports various proof modes.

• No disables generation of justifications

• Dep enables generation of dependencies (default).

• Yes enables generation of proof terms (disabled in ICS 2.0).

val set_gc_mode : string -> unit

Various settings for garbage collection

• Lazy delay garbage collection

• Eager garbage collection.

val set_gc_space_overhead : int -> unit

GC will work more ifspace_overhead is smaller (default 80).

val set_gc_max_overhead : int -> unit

Controlling heap compaction (default 500),gc_max_overhead >= 1000000 disables
compaction.

Channels

type inchannel = Pervasives.in_channel

inchannel is the type of input channels.

type outchannel = Format.formatter

Formattable output channel.

val channel_stdin : unit -> inchannel

channel_stdin is the predefined standard input channel.

val channel_stdout : unit -> outchannel

channel_stdout is the predefined standard output channel.

val channel_stderr : unit -> outchannel

channel_stdout is the predefined standard error channel. All ICS trace messages are put
onto this channel.

val inchannel_of_string : string -> inchannel
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inchannel_of_string str opens an input channel for reading from a string (file name).
This function raisesSys_error in case such a channel can not be opened.

val outchannel_of_string : string -> outchannel

outchannel_of_string str opens an output channel for writing from a string (file
name). This function raisesSys_error in case such a channel can not be opened.

Multi-precision arithmetic

type q

Type for representing the rational numbers.

val num_of_int : int -> q

num_of_int n constructs a rational from the integern.

val num_of_ints : int -> int -> q

num_of_ints n m, for m <> 0, constructs a normalized representation of the rationaln/m
in q.

val ints_of_num : q -> string * string

ints_of_num q decomposes a rational with numeratorn and denumeratorm into ("n",
"m").

val string_of_num : q -> string

string_of_num q constructs a string (usually for printout) of a rational number

val num_of_string : string -> q

num_of_string s constructs a rational, whenevers is of the formn/m wheren andm are
integers.

Names

type name

Representation of strings with constant equality test.

val name_of_string : string -> name

name_of_string str constructs a namen from a string such that
Ics.name_to_string[4](n) yieldsstr.
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val name_to_string : name -> string

name_to_string n is the inverse operation ofIcs.name_of_string[4].

val name_eq : name -> name -> bool

name_eq n m holds iff the corresponding stringsIcs.name_to_string[4](n) and
Ics.name_to_string[4](m) are equal. This equality test is constant in the length of
strings.

Arithmetic domains

type dom

Arithmetic domains

val dom_mk_int : unit -> dom

val dom_mk_real : unit -> dom

val dom_is_int : dom -> bool

val dom_is_real : dom -> bool

Theories

type th

A theory is associated with each function symbol of terms.

• u Theory of uninterpreted function symbols.

• la Linear arithmetic theory.

• p Product theory.

• bv Bitvector theory.

• cop Coproducts.

• nl Power products.

• app Theory of function abstraction and application.

• arr Array theory.

• pset Theory of propositional sets

val th_to_string : th -> string

th_to_string th returns the unique name associated to theoryth.

val th_of_string : string -> th

th_of_string s returns theoryth if to_string th is s; otherwise the result is
unspecified.

Function symbols

type sym
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Representation of function symbols. Function symbols are partitioned into

• uninterpretedfunction symbols (of theoryu) and

• interpretedfunction symbols from the theoriesla, p, bv, cop, nl, cop, app, arr, and
pset above.

val sym_theory_of : sym -> th

sym_theory_of f returns the theoryth associated with the function symbolf.

val sym_eq : sym -> sym -> bool

sym_eq tests, in constant time, for equality of two function symbols.

val sym_cmp : sym -> sym -> int

sym_cmp f g provides a total ordering on function symbols. If it returns

• a negative integer, thenf is said to be smaller thang,

• 0, thenf is equal tog andIcs.sym_eq[4](f, g), and

• a positive numbe, thenf is said to be larger thang.

val sym_is_uninterp : sym -> bool

sym_is_uninterp f holds iff f is an uninterpreted function symbol.

val sym_d_uninterp : sym -> name

sym_d_uninterp f returns the name associated with an uninterpreted function symbolf.
This accessor is undefined ifIcs.sym_is_uninterp[4](f) does not hold.

Linear arithmetic function symbols are either

• numeralsfor representing all rational numbers,

• theadditionsymbols,

• symbols for representinglinear multiplicationby a rational of typeIcs.q[4].

val sym_mk_num : q -> sym

sym_mk_num q constructs a numeral symbol for representingq.

val sym_is_num : sym -> bool

sym_is_num f holds iff f represents a numeral.

val sym_d_num : sym -> q
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sym_d_num f returns the rationalq if f representsq. This accessor is undefined if
Ics.sym_is_num[4] does not hold.

val sym_mk_add : unit -> sym

sym_mk_add() constructs the addition symbol.

val sym_is_add : sym -> bool

sym_is_add f holds iff f represents the addition symbol.

val sym_mk_multq : q -> sym

sym_mk_multq q constructs the symbol for linear multiplication by a rationalq.

val sym_is_multq : sym -> bool

sym_is_multq f holds iff f represents a linear multiplication symbol.

val sym_d_multq : sym -> q

sym_d_multq f returnsq if f represents linear multiplication byq. This accessor is
undefined ifIcs.sym_d_multq[4] does not hold.

Symbols of theproduct theory p consist of

• consing

• and first and second projectionscar, cdr.

val sym_mk_cons : unit -> sym

sym_mk_cons() constructs the symbol for tupling.

val sym_is_cons : sym -> bool

sym_is_cons f holds iff f represents tupling.

val sym_is_car : sym -> bool

sym_is_car f holds iff f represents a projection.

val sym_mk_car : unit -> sym
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sym_mk_car() constructs the symbol for the first projection

val sym_is_cdr : sym -> bool

sym_is_cdr f holds iff f represents a projection.

val sym_mk_cdr : unit -> sym

sym_mk_cdr() constructs the symbol for the first projection

Symbols of the theory ofcoproductsare eith

• left and right injections,

• left and right coinjections

val sym_mk_inl : unit -> sym

sym_mk_inl () constructs symbol for left injection.

val sym_is_inl : sym -> bool

sym_is_inl f holds iff f represents left injection.

val sym_mk_inr : unit -> sym

sym_mk_inr () constructs symbol for right injection.

val sym_is_inr : sym -> bool

sym_is_inr f holds iff f represents right injection.

val sym_mk_outl : unit -> sym

sym_mk_outl () constructs symbol for left injection.

val sym_is_outl : sym -> bool

sym_is_outl f holds iff f represents left coinjection.

val sym_mk_outr : unit -> sym

sym_mk_outr () constructs symbol for right coinjection.

val sym_is_outr : sym -> bool
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sym_is_outr f holds iff f represents right coinjection.

Symbols in the fixed-sizedbitvector theory include

• constant bitvectors of lengthn >= 0,

• concatenation of a bitvector of widthn >= 0 with a bitvector of widthm >= 0,

• extraction of bitsi throughj of a bitvector of lengthn >= 0, (0 <= i <= j < n), and

• bitwise conditionals for bitvectors of lengthn.

val sym_mk_bv_const : string -> sym

sym_mk_bv_const str constructs, say, a bitvector constant01001 from a string of the
form "01001". The result is undefined if characters other than’0’ or ’1’ appear in the
string.

val sym_is_bv_const : sym -> bool

sym_is_bv_const f holds iff f represents a bitvector constant symbol.

val sym_mk_bv_conc : int -> int -> sym

sym_mk_bv_conc n m constructs a concatenation symbol with indicesn andm, for n, m
>= 0, for concatenating a bitvector of widthn with a bitvector of lengthm.

val sym_is_bv_conc : sym -> bool

sym_is_bv_conc f holds iff f represents a concatenation symbol.

val sym_d_bv_conc : sym -> int * int

sym_d_bv_conc f returns(n, m) iff f represents a concatenation symbol for bitvectors of
width n with a bitvector of widthm.

val sym_mk_bv_sub : int -> int -> int -> sym

sym_mk_bv_sub i j n constructs a bitvector extraction symbol for the indices0 <= i <=
j < n.

val sym_is_bv_sub : sym -> bool

sym_is_bv_sub f holds iff f represents a bitvector extraction symbol.
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val sym_d_bv_sub : sym -> int * int * int

sym_d_bv_sub f returns(i, j, n) iff f represents a bitvector extraction of bitsi
throughj of a bitvector of widthn.

Symbols from the theory ofpower products include

• Multi-ary nonlinear multiplication symbol

• Exponentiation with an integer.

val sym_mk_mult : unit -> sym

sym_mk_mult() constructs the nonlinear multiplication symbol.

val sym_is_mult : sym -> bool

sym_is_mult f holds iff f represents the nonlinear multiplication symbol.

Symbols from the theory offunction abstraction and application include

• function abstraction

• function application

A function application symbol may have a constraint of typeIcs.cnstrnt associated with it.

val sym_mk_apply : unit -> sym

sym_mk_apply co constructs a symbol for function application with associated constraint
co.

val sym_is_apply : sym -> bool

sym_is_apply f holds iff f represents the function application symbol.

val sym_mk_s : unit -> sym

sym_mk_s() constructs the symbol for theS combinator.

val sym_is_s : sym -> bool

sym_is_s f holds iff f represents theS combinator.

val sym_mk_k : unit -> sym

sym_mk_s() constructs the symbol for theK combinator.
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val sym_is_k : sym -> bool

sym_is_k f holds iff f represents theK combinator.

val sym_mk_i : unit -> sym

sym_mk_i() constructs the symbol for theI combinator.

val sym_is_i : sym -> bool

sym_is_i f holds iff f represents theI combinator.

Symbols from the theory ofarrays include

• array updates (write)

• array selection (read)

val sym_mk_select : unit -> sym

The array select symbol.

val sym_is_select : sym -> bool

sym_is_select f holds iff f represents the array selection symbol.

val sym_mk_update : unit -> sym

The array update symbol.

val sym_is_update : sym -> bool

sym_is_update f holds iff f represents the array update symbol.

Symbols from the theory ofpropositional setsinclude

• empty set

• full set

• conditional set.

val sym_mk_empty : unit -> sym

The empty set symbol

val sym_is_empty : sym -> bool

sym_is_empty f holds iff f represents the empty set symbol.
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val sym_mk_full : unit -> sym

The full set symbol

val sym_is_full : sym -> bool

sym_is_full f holds iff f represents the full set symbol.

val sym_mk_ite : unit -> sym

The conditional set symbol

val sym_is_ite : sym -> bool

sym_is_ite f holds iff f represents the conditional set constructor.

Terms

Terms are either

• variables or

• applications of function symbols of typeIcs.sym[4] to a list of terms.

type term

val term_of_string : string -> term

term_of_string parses a string according to the grammar for the nonterminal
Parser.termeof (see its specification in fileparser.mly) and builds a corresponding
term.

val term_input : inchannel -> term

term_input inch is similar toIcs.term_of_string[4] but builds a term by reading
from input channelinch.

val term_output : outchannel -> term -> unit

term_output outch a prints terma on the output channelout.

val term_to_string : term -> string

term_to_string a prints a term to a string. This string is parsable by
Ics.term_of_string[4].

val term_pp : term -> unit

term_pp a is equivalent toterm_output (Ics.stdout()) a.
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val term_eq : term -> term -> bool

term_eq a b holds iff a andb are syntactically equal, that is, either

• botha andb are variables of the same kind and their associated names are equal

• botha andb are application terms with equal function symbols (seeIcs.sym_eq[4]),
the number of arguments ina andb is equal, and the respective arguments at every
position are term equal.

val term_cmp : term -> term -> int

Comparisonterm_cmp a b returns either-1, 0, or 1 depending on whethera is less thanb,
the arguments are equal, ora is greater thanb.

• Variables are always greater than applications,

• variables are ordered according toIcs.var_cmp, and

• applications are ordered lexicographically usingIcs.sym_cmp[4] on the function
symbols and comparing respective term arguments.

val term_mk_var : string -> term

Given a strings, term_mk_var s constructs anexternalvariable with names.

val term_mk_uninterp : string -> term list -> term

term_mk_uninterp s al constructs an application of an uninterpreted function symbols
to a listal of argument terms.

Linear arithmetic terms are built-up from rational constants, linear multiplication of a rational
with a variable, and n-ary addition.

Linear arithmetic terms are always normalized as asum-of-product q0 + q1*x1+...+qn*xn
where theqi are rational constants and thexi are variables (or any other term not interpreted in
this theory), which are ordered such thatIcs.term_cmp[4]xi xj is greater than zero fori < j.
This implies that any such variable occurs at most once. In addition,qi, for i > 0, is never zero.
If qi is one, we just writexi instead ofqi * xi, and if q0 is zero, it is simply omitted in the
sum-of-product above.

Terms in this theory include rational constants built fromterm_mk_num q, linear multiplication
term_mk_multq q a, additionterm_mk_add a b of two terms, n-ary additionterm_mk_addl
al of a list of termsal, subtractionterm_mk_sub a b of termb from terma, negationterm_mk_unary_minus
a, multiplicationterm_mk_mult a b, and exponentiationterm_mk_expt n a. These construc-
tors build up arithmetic terms in a canonical form as defined in moduleArith. term_is_arith a
holds iff the toplevel function symbol ofa is any of the function symbols interpreted in the theory
of arithmetic.

val term_is_arith : term -> bool

term_is_arith a holds if the toplevel symbol ofa is interpreted in linear arithmetic.

val term_mk_num : q -> term
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term_mk_num q constructs a numeral term for representing the rationalq.

val term_mk_multq : q -> term -> term

term_mk_multq q a constructs a term for representing the terma multiplied byq. If a is
in sum-of-product form, then so isterm_mk_multq q a.

val term_mk_add : term -> term -> term

term_mk_add a b constructs a term for representing the sum ofa andb. If both a andb
are in sum-of-product form, then so isterm_mk_add a b.

val term_mk_addl : term list -> term

Iteration of binary addition
• term_mk_addl [] is Ics.term_mk_num(),
• term_mk_addl [a] is a, and
• term_mk_addl (a :: al) is term_mk_add a (term_mk_addl al).

val term_mk_sub : term -> term -> term

term_mk_sub a b represents the differencea - b. If both a andb are in sum-of-product
form, then so is the result.

val term_mk_unary_minus : term -> term

term_mk_unary_minus a represents the negation ofa. If a is in sum-of-product form,
then so is the result.

Tuple terms. Tuple terms in normal form do not contain (applicable) projections on tuples.

val term_mk_tuple : term list -> term

term_mk_tuple [a1;...;an] constructs tuple term for respresenting the tuple
(a1,...,an). The result is in tuple normal form, when allai are in tuple normal form

val term_mk_proj : int -> term -> term

term_mk_proj i a constructs, for0 <= i < n, a term for representing thei-th projection
of ann-tuple. If a is in tuple normal form, then so is the result.

Bitvector terms are built up from bitvector constants, concatenation of two bitvectors, extrac-
tion of a contiguous subrange from a bitvector, and logical bitwise operations. Each bitvector term
has a nonnegativewidth associated with it, and bits in a bitvector of widthn are addressed from0
to n-1 in increasing order from left-to-right. All bitvector terms are inconcatenation normal form,
that is, a left-associative concatenation of
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• terms uninterpreted in the bitvector theory

• bitvector constants (with adjacent constants merged)

• single extractions from uninterpreted terms in this theory

• bitvector BDDs, which are BDDs with nodes consisting of one of the above classes of terms.

The constructors below all construct concatenation normal forms, whenever their arguments
are in this form.

val term_mk_bvconst : string -> term

term_mk_bvconst str constructs a bitvector constant.

val term_mk_bvsub : int * int * int -> term -> term

term_mk_bvsub i j n a constructs, for0 <= i <= j < n a term for representing the
extraction of thej-i+1 bits from positioni throughj in a term of widthn.

val term_mk_bvconc : int * int -> term -> term -> term

term_mk_bvconc n m a b constructs the concatenationa ++ b of bitvector termsa of
width n with b of width m.

Boolean Constants.aretrue andfalse.

val term_mk_true : unit -> term

The propositional constantterm_mk_true() is encoded as the bitvector constant of width
1 with a1 at position0.

val term_mk_false : unit -> term

The propositional constantterm_mk_false() is encoded as the bitvector constant of width
1 with a0 at position0.

val term_is_true : term -> bool

term_is_true a holds iff a is term equal toterm_mk_true().

val term_is_false : term -> bool

term_is_false a holds iff a is term equal toterm_mk_false().

Coproductsconsist of

• injectionsinj n

• outjectionsout n.
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val term_mk_inj : int -> term -> term

term_mk_inj n a constructs a term forn-ary injection.

val term_mk_out : int -> term -> term

term_mk_out n a constructs a term forn-ary outjection.

Array terms are built up from

• constant arrays

• updates of arrays

• lookup of arrays.

val term_mk_create : term -> term

term_mk_create a represents an array with elementsa.

val term_mk_update : term -> term -> term -> term

term_mk_update a i x represent an arraya updated at positioni with valuex.

val term_mk_select : term -> term -> term

term_mk_select a j represents the value of arraya at positionj.

Nonlinear terms are sum-of-products with power productsa1^n1 * ... an^nk with ai
terms andni integers at uninterpreted positions.

val term_mk_mult : term -> term -> term

term_mk_mult a b constructs a nonlinear term for representing the multiplication ofa and
b.

val term_mk_multl : term list -> term

term_mk_multl [a1;...;an] constructs a nonlinear term for representing the
multiplicationa1 * ... * an.

Function application

val term_mk_apply : term -> term -> term

term_mk_apply a b represents the application ofa, viewed as a function, to the argument
b.
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type terms

Representation of a set of terms.

val terms_of_list : term list -> terms

Constructing a set of terms from a list of terms.

val terms_to_list : terms -> term list

Converting a set of terms into a list of terms.

Atoms

type atom

An atom is either

• the trivially true atomatom_mk_true,

• the unsatisfiableatom_mk_false,

• an equality atomatom_mk_equal a b,

• a disequality atomatom_mk_diseq a b, or

• a constraint atomatom_mk_in a c, which constrainsa to be interpreted over the
domainD(c) associated with the constraintc of typeIcs.cnstrnt.

val atom_pp : atom -> unit

Pretty-printing an atom tostdout.

val atom_of_string : string -> atom

Parsing a string to obtain an atom.

val atom_to_string : atom -> string

Printing an atom to a string.

val atom_mk_true : unit -> atom

Constructing the trivially true atom.

val atom_mk_false : unit -> atom

Constructing an unsatisfiable atom.

val atom_mk_equal : term -> term -> atom

atom_mk_equal a b constructs an atom for representing the equality betweena andb.

val atom_mk_diseq : term -> term -> atom

atom_mk_diseq a b constructs an atom for representing the disequality ofa andb.

val atom_mk_le : term -> term -> atom
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atom_mk_le a b constructs an atom for representinga <= b.

val atom_mk_lt : term -> term -> atom

atom_mk_lt a b constructs an atom for representinga < b.

val atom_mk_ge : term -> term -> atom

atom_mk_ge a b constructs an atom for representinga >= b.

val atom_mk_gt : term -> term -> atom

atom_mk_gt a b constructs an atom for representinga > b.

val atom_negate : atom -> atom

Constructs the negation of an atom.

Justifications

type justification

A justificationis either

• a tagUnjustified or

• a set of context atoms.

val justification_pp : justification -> unit

Print a justification tostdout.

Processing

type context

A logical contextrepresents a conjunction of atoms.

val context_pp : context -> unit

Pretty-printing a context to standard output.

val context_ctxt_pp : context -> unit

Pretty-printing the logical context in a way that can be read in again by the parser.

val context_eq : context -> context -> bool

context_eq s1 s2 is a constant-time predicate for testing for identity of two states. Thus,
whenever this predicate holds, its corresponding contexts are logically equivalent.

val context_ctxt_of : context -> atom list
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context_ctxt_of s returns the logical context ofs as a set of atoms.

val context_mem : th -> context -> Term.t -> bool

context_mem th s x iff x = _ is in the solution set for theoryth in s.

val context_apply :
th -> context -> Term.t -> Term.t * justification

apply th s x is a whenx = a is in the solution set for theoryth in s; otherwise
Not_found is raised.

val context_find :
th -> context -> Term.t -> Term.t * justification

find th s x is a if x = a is in the solution set for theoryth in s; otherwise, the result is
justx.

val context_inv : th -> context -> Term.t -> Term.t

inv th s a is x if there isx = a in the solution set for theoryth; otherwiseNot_found is
raised.

val context_use : th -> context -> Term.t -> Term.Set.t

use th s x consists of the set of all term variablesy such thaty = a in s, andx is a
variablea.

val context_empty : unit -> context

context_empty() represents the empty logical context.

type status

Inhabitants of type status are used as return values forIcs.process[4]. There are three
possible outcomes.
• Redundant implies the argumenta in Ics.process[4]s a is valid in contexts.
• Inconsistent implies the argumenta conjoined withs in Ics.process[4]s a is

inconsistent.
• Consistent neither a redundancy nor an inconsistency could be detected.

val is_consistent : status -> bool

val is_redundant : status -> bool

val is_inconsistent : status -> bool

val d_consistent : status -> context
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In caseis_consistent st holds,d_consistent st returns the extended context.

val process : context -> atom -> status

The operationprocess s a adds a new atoma to a logical contexts. The codomain of this
function is of typestatus, elements of which represent the three possible outcomes of
processing an atom

• the atoma could be demonstrated to be inconsistent ins. In this case,
Ics.is_inconsistent[4] holds of the result.

• the atoma could be demonstrated to be derivable in the contexts. In this case,
Ics.is_redundant[4] holds.

• Neither of the above holds. In this case, a modified context for representing the context
of s conjoined witha is obtained using the destructorIcs.d_consistent[4].

Notice that a resultres with Ics.is_consistent[4](res) does not necessarily imply that
atoma is indeed satisfiable, since the theory of ICS is indeed undecidable. Moreover, ICS
includes a number of nonconvex theories, which requires case-splitting for completeness.
process does not perform these case-splits in order to keep worst-case runtimes
polynomial (with the notable exception of canonization of logical bitwise operators).
Instead, it is in the responsibility of the application programmer to perform these splits; see
alsoIcs.split[4].

val split : context -> atom list

Suggested case splits.

val can : context -> term -> term * justification

Given a logical contexts and an atoma, can s a computes a semicanonical form ofa in s,
that is,

• if a holds ins it returnsAtom.True,

• if the negation ofa holds ins then it returnsAtom.False, and, otherwise,

• an equivalent normalized atom built up only from variables is returned.

val dom : context -> term -> dom * justification

Given a logical contexts and a terma, cnstrnt s a computes an arithmetic constraint for
a in s using constraint information ins and abstraction interval interpretation. If no such
constraint can be deduced,None is returned.

Propositional logic

type prop

Representation of propositional formulas with propositional variables and atoms as literals.
A propositional formual is either

• one of the propositional constantstt, ff

• a propositional variablex,

• a literall with l an atom (atoms are closed under negation),
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• a conjunctionp1 & ... & pn,

• a disjunctionp1 | ... | pn,

• a negatioñ p, or

• a let bindinglet x := p in q.

val prop_pp : prop -> unit

Printing a propositional formula.

val prop_of_string : string -> prop

Parsing a string to obtain a propositional formula. The syntax of propositional formulas is
roughly given by the grammar above, and brackets[] are used for grouping. For details of
the grammar see fileparser.mly.

val prop_to_string : prop -> string

Pretty-print a propositional variable to a string.

val prop_mk_true : unit -> prop

The trivially true propositional formula.

val prop_mk_false : unit -> prop

The trivially false propositional formula.

val prop_mk_var : name -> prop

Constructing a propositional variable.

val prop_mk_poslit : atom -> prop

Injecting an atom into a propositional formula.

val prop_mk_neglit : atom -> prop

Injecting a negated atom into a propositional formula.

val prop_mk_ite : prop -> prop -> prop -> prop

prop_mk_ite p q r constructs a propositional formula equivalent toprop_mk_disj
(prop_mk_conj p q) (prop_mk_conj (prop_mk_neg p) r).

val prop_mk_conj : prop list -> prop

prop_mk_conj [p1;...;pn] constructs a representation of the conjunction ofp1 & ...
& pn with the empty list[] equivalent toprop_mk_true().

val prop_mk_disj : prop list -> prop

prop_mk_disj p q constructs a representation of the disjunction ofp andq.
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val prop_mk_iff : prop -> prop -> prop

prop_mk_iff p q constructs a representation of the equivalence ofp andq.

val prop_mk_neg : prop -> prop

prop_mk_neg p constructs a representation of the negation ofp.

val prop_mk_let : name -> prop -> prop -> prop

prop_mk_let x p q constructs a structure-shared representation of the formula wherex is
replaced byp in q.

val prop_is_true : prop -> bool

Exactly one of the following recognizers is true for a propositional formula.

val prop_is_false : prop -> bool

val prop_is_var : prop -> bool

val prop_is_atom : prop -> bool

val prop_is_ite : prop -> bool

val prop_is_disj : prop -> bool

val prop_is_iff : prop -> bool

val prop_is_neg : prop -> bool

val prop_is_let : prop -> bool

val prop_d_var : prop -> name

If the corresponding recognizer above holds, propositional formulas may be destructured
using the following.

val prop_d_atom : prop -> atom

val prop_d_ite : prop -> prop * prop * prop

val prop_d_disj : prop -> prop list

val prop_d_iff : prop -> prop * prop

val prop_d_neg : prop -> prop

val prop_d_let : prop -> name * prop * prop

type assignment

Representation of assignments for propositional formulas.

val assignment_pp : assignment -> unit

Pretty-printing assignments.

val assignment_valuation : assignment -> (name * bool) list
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Assignments to propositional variables.

val assignment_literals : assignment -> atom list

Assignment to nonpropositional literas.

val prop_sat : context -> prop -> assignment option

prop_sat s p determines if the propositional formulap is satisfiable in contexts. It
returns

• None, if p is unsatisfiable,

• Some(ms), if p is satisfiable; in this case,ms implicitly represents a set of candidate
models.

Imperative states

An imperative stateistate does not only include a logical context of typestate but also a
symbol table and input and output channels. A globalistate variable is manipulated and destruc-
tively updated by commands.

val init : int -> unit

Initialization. init n sets the verbose level ton. The higher the verbose level, the more
trace information is printed tostderr (see below). There are no trace messages forn = 0.
In addition, initialization makes the system to raise theSys.Break exception upon user
interrupt^C^C. Theinit function should be called before using any other function in this
API.

val set_outchannel : outchannel -> unit

val set_inchannel : inchannel -> unit

val set_prompt : string -> unit

val set_eot : string -> unit

val cmd_rep : unit -> unit

cmd_rep reads a command from the current input channel according to the grammar for the
nonterminalcommandeof in moduleParser (see its specification in fileparser.mly, the
current internalistate accordingly, and outputs the result to the current output channel.

val cmd_batch : inchannel -> int

Similar toIcs.cmd_rep[4], but syntax error messages contain line numbers, and
processing is aborted after state is unsatisfiable.

val flush : unit -> unit

Flush currently active output channel.

Controls

val reset : unit -> unit
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reset() clears all the global tables. This does not only include the current context but also
internal tables used for hash-consing and memoization purposes.

val gc : unit -> unit

gc() triggers a full major collection of ocaml’s garbage collector.

val sleep : int -> unit

Sleeping for a number of seconds.

Tracing

Rudimentary control on trace messages, which are sent tostderr. These functions are mainly
included for debugging purposes, and are usually not being used by the application programmer.

val trace_reset : unit -> unit

trace_reset() disables all tracing.

val trace_add : string -> unit

trace_add str enables tracing of functions associated with trace levelstr. For example,
trace_add "rule" traces the calls for processing all generated equalities, disequalities,
and constraints.

val trace_remove : string -> unit

trace_remove str removesstr from the set of active trace levels

val trace_get : unit -> string list

trace_get() returns the set of active trace levels.

Lists

val is_nil : ’a list -> bool

val cons : ’a -> ’a list -> ’a list

val head : ’a list -> ’a

val tail : ’a list -> ’a list

Pairs

val pair : ’a -> ’b -> ’a * ’b

pair a b builds a pair(a,b).

val fst : ’a * ’b -> ’a
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fst p returnsb if p is equal to somepair a _.

val snd : ’a * ’b -> ’b

snd p returnsb if p is equal to somepair _ b.

Triples

val triple : ’a -> ’b -> ’c -> ’a * ’b * ’c

val fst_of_triple : ’a * ’b * ’c -> ’a

val snd_of_triple : ’a * ’b * ’c -> ’b

val third_of_triple : ’a * ’b * ’c -> ’c

Quadruples

val fst_of_quadruple : ’a * ’b * ’c * ’d -> ’a

val snd_of_quadruple : ’a * ’b * ’c * ’d -> ’b

val third_of_quadruple : ’a * ’b * ’c * ’d -> ’c

val fourth_of_quadruple : ’a * ’b * ’c * ’d -> ’d

Option types

An element of type’a option either satisfies the recognizeris_some or is_none. In case,
is_some holds, a value of type’a can be obtained byvalue_of.

val is_some : ’a option -> bool

val is_none : ’a option -> bool

val value_of : ’a option -> ’a

5 Calling ICS from Ocaml

The following Ocaml program tries to asserts the trivial atom5 <= 4 to the empty context using
theprocess function in the interface and outputs the result to standard output.

open Ics

let main () =
let c = context_empty () in
let a =
atom_mk_le

(term_mk_num (num_of_int 5)) (term_mk_num (num_of_int 4)) in
let s = process c a in

begin if is_consistent s then
print_string "Consistent"

else if is_inconsistent s then

43



print_string "Inconsistent"
else if is_redundant s then
print_string "Redundant"

else
failwith "Error"

end;
print_newline ();
Pervasives.flush Pervasives.stdout ;;

main () ;;

Given that this program is stored in filetest.ml, it is compiled with

$ ocamlopt -I <icspath>/lib/i686-pc-linux-gnu/ -c test.ml
$ ocamlopt -I <icspath>/lib/i686-pc-linux-gnu/ -o test unix.cmxa ics.cmxa test.cmx

So the only things needed are to give the Ocaml compiler the path to the library-I <path>
and the linker the ICS library itself plusunix.cmxa as the Ocaml libraryunix is used by ICS.
Notice that libraries for different platforms are distributed with ICS, and in the above we as-
sume thei686-pc-linux-gnu architecture. The architecture name can also be obtained using
config.guess.

Now, thetest program can be run to get the not too unexpected result.

$ ./test
Inconsistent

6 Calling ICS from C/C++

The API for the C programming language is generated automatically from the Ocaml API de-
scribed above. The generated C file can be found in

./obj/$ARCH/ics_stub.c

This file contains a C function declarationics_xxx for each of the interface functionxxx described
above. For example, the definition of the functionics_mk_var for themk_var constructor is given
by the following C code.

value* ics_mk_var(char* x1) {
value* ics_mk_var(char* x1) {
value* r = malloc(sizeof(value));
register_global_root(r);
*r = 1;
*r = callback_exn(*ics_mk_var_rv,copy_string(x1));
if (!Is_exception_result(*r)) { return r; };
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ocaml_error("ics_mk_var",format_caml_exception(Extract_exception(*r)));
return (value*) 0;

}

These interface function translate C arguments to Ocaml values, call the Ocaml function, and
translate back the results. In addition, any Ocaml exceptions are caught and handled by the
ocaml_error function. Curried signatures of the Ocaml functions are uncurried, and list and
tuple arguments must be build using the constructors of the interface. The handling of excep-
tions is determined by the functionocaml_error, which has to be provided by the application
programmer.

Calls to the C functions in the interface must obey the typing restrictions of Ocaml, otherwise
the result is undefined (typically, the program crashes). For example, the functionics_term_cmp
may only be called with two arguments representing term values, since the signature of this func-
tion in the interface is given asterm -> term -> int.

When usingC++ the following declarations are needed to use ICS. First, declare a function
ics_caml_startup before includingics.h.1

extern "C" {
void ics_caml_startup(int full, char** argv);
#include<ics.h>
}

Second, an application-dependentics_error function such as the one below has to be provided.

extern "C" {

void ics_error(char * funname, char * message) {
cerr << "ICS error at " << funname << " : " << message << endl;
exit(1);

}
}

Third, before calling any ICS functionality, callics_caml_startup.

int main(int argc, char ** argv) {
ics_caml_startup(1, argv);
...

}

A minimal C++ program for calling ICS can be found in Figure1. If this program is stored in a file
hello-ics.cpp, then it can be compiled using

g++ hello-ics.cpp -lics
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#include<iostream.h>
extern "C" {
void ics_caml_startup(int full, char** argv);
#include<ics.h>
}

int main(int argc, char ** argv) {
ics_caml_startup(1, argv);
cout << "ICS: Hello World\n";

}

extern "C" {
void ics_error(char * funname, char * message) {

cerr << "ICS error at " << funname << " : " << message << endl;
exit(1);

}}

Figure 1: Minimal setup for calling ICS.

Notice thatLD_LIBRARY_PATH variable should be such that the ICS librarylibics.a can be found
in the linking stage.

AppendixA contains an implementation of a bounded model checker for the Bakery mutual
exclusion protocol inC++. Assuming that the name of the corresponding file isbakery.cpp, then
this program can be compiled on a Linux platform using the static librarylibics.a with the
following command:

g++ -o bakery -L $ICSPATH/lib/i686-pc-linux-gnu/ -I $ICSPATH/obj/i686-pc-linux-gnu/ -lics bakery.cpp

Here,ICSPATH is assumed to be set to the the ICS home directory which contains ...

7 Calling ICS from Lisp

The Lisp API for ICS builds on the C interface and uses the foreign function interface of Allegro
Common Lisp 6.0. For each functionxxx in the API a foreign function declarationics_xxx is
generated. In order to use ICS in Lisp, the shared object filelibicsall.so has to be loaded
followed by loading the foreign function interface.

> (load "./lib/i686-pc-linux-gnu/libicsall.so")
; Foreign loading lib/i686-pc-linux-gnu/libicsall.so.
t

1Within theextern "C" directive, theC++ compiler does not rename functions.
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> (load "./include/ics.lisp")
t

Now, all the functions in the ICS interface are available in Lisp. It is the Lisp programmer’s
responsibility to call the ICS functions in a type-correct way. Calls to ICS functions violating the
Ocaml type discipline may have fatal consequences for the Lisp image. The ICS data structures
can be garbage collection using the Lisp garbage collector using finalization on wrappers of ICS
pointers. In the following, the Allegro Lisp functionexcl:schedule-finalization directs the
Lisp garbage collector to callwrap-free! when garbage collecting the wrapper, and the function
wrap-free! calls the ICS deregistration function on the unwrapped ICS structure.

(defstruct (wrap
(:predicate wrap?)
(:constructor make-wrap (address))
(:print-function
(lambda (p s k)
(declare (ignore k))

(format t "<#wrap: ~a>" (wrap-address p)))))
address)

(defun wrap-finalize! (w)
(excl:schedule-finalization w ’wrap-free!))

(defun wrap-free! (w)
(ics_deregister (unwrap w)))

In this way it is ensured that the Lisp and the Ocaml garbage collector cooperate as long as every
ICS wrapper has been finalized. A typical construction is demonstrated below.

(defun ics-empty-state ()
(let ((empty (make-wrap (ics_context_empty))))

(wrap-finalize! empty)
empty))

The empty ICS context is obtained usingics_context_empty, and the corresponding Lisp wrap-
perempty is finalized before being returned by this function.

ICS errors and exceptions are being handled through the Lisp exception mechanism, and ICS
functions are interruptable usingCtrl-C Ctrl-C.

Acknowledgements.The algorithms and data structures underlying ICS have been developed
by N. Shankar and Harald Rueß. The core ICS code is by Harald Rueß and Jean-Christophe Fil-
liâtre, and the Lisp interface has been developed by Sam Owre, Harald Rueß, and Jean-Christophe
Filliâtre. The GMP ocaml interface was originally written by David Monniaux, and adjusted for
use withocaml 3.00 by Jean-Christophe Filliâtre. Leonardo de Moura wrote the simulator in
AppendixA.
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A Bakery Mutual Exclusion Protocol

The following program realizes a symbolic simulator for a simplified Bakery mutual exclusion
protocol using the ICS interface to C.

/***
PURPOSE

NOTES

HISTORY
demoura - Aug 8, 2002: Created.

Comiling using static library:
g++ -o bakery -L ../lib/i686-pc-linux-gnu/ \

-I ../obj/i686-pc-linux-gnu/ \
-lics bakery.cpp

Compiling using dynamic library:
g++ -o bakery -L ../lib/i686-pc-linux-gnu/ \

-I ../obj/i686-pc-linux-gnu/ \
-licsall -lgmp bakery.cpp

***/
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>

extern "C" {
void ics_caml_startup(int full, char** argv);
#include<ics.h>
}

extern "C" {
void ics_deregister(value* r);
}

#define MAX_ARRAY_SIZE 1024

int CALLS_TO_ICS = 0;

value * y1_ge_0;
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value * y2_ge_0;
value * ny1_eq_y1[MAX_ARRAY_SIZE];
value * ny2_eq_y2[MAX_ARRAY_SIZE];
value * ny1_eq_y2_plus_1[MAX_ARRAY_SIZE];
value * ny2_eq_y1_plus_1[MAX_ARRAY_SIZE];
value * y1_eq_0[MAX_ARRAY_SIZE];
value * y2_eq_0[MAX_ARRAY_SIZE];
value * y1_lt_y2[MAX_ARRAY_SIZE];
value * y2_lt_y1[MAX_ARRAY_SIZE];

#define BUFFER_SIZE 8192

void init_arrays(int max_depth)
{
static char buffer[BUFFER_SIZE];
y1_ge_0 = ics_atom_of_string("y10 >= 0");
y2_ge_0 = ics_atom_of_string("y20 >= 0");

for(int i = 0; i <= max_depth; i++) {
sprintf(buffer, "y1%d = y1%d", i+1, i);
ny1_eq_y1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = y2%d", i+1, i);
ny2_eq_y2[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d = y2%d + 1", i+1, i);
ny1_eq_y2_plus_1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = y1%d + 1", i+1, i);
ny2_eq_y1_plus_1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d = 0", i);
y1_eq_0[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = 0", i);
y2_eq_0[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d < y2%d", i,i);
y1_lt_y2[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d < y1%d", i,i);
y2_lt_y1[i] = ics_atom_of_string(buffer);

}
}
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bool process(value * state, value ** next, bool d_prev, value * atom) {
CALLS_TO_ICS++;
value * status = ics_process(state, atom);
bool result;

if (ics_is_consistent(status)) {
*next = ics_d_consistent(status);
result = true;

}
else if (ics_is_redundant(status)) {
*next = state;
result = true;

}
else if (ics_is_inconsistent(status)) {
result = false;

}
if (d_prev) {
ics_deregister(state);
free(state);

}
ics_deregister(status);
free(status);
return result;

}

int MAX_DEPTH = 0;

bool printed = false;

#define ERROR() {
if (!printed) {
ics_context_pp(state);
printed = true;

}
cout << endl;
cout << "pc1 = " << pc1 << ", pc2 = " << pc2 << ", at depth = " << depth << endl;
return 0;

}

int bakery_step(int pc1, int pc2, int depth, value * state)
{
if (depth >= MAX_DEPTH)
return 1;
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if (pc1 == 3 && pc2 == 3) {
cout << "Error detected.... pc1 = "

<< pc1
<< ", pc2 = "
<< pc2
<< " at depth = "
<< depth
<< endl;

return 0;
}

value * new_state;

switch (pc1) {
case 1:
if(!process(state, &new_state, 0, ny1_eq_y2_plus_1[depth]))

break;
if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;
if (!bakery_step(2, pc2, depth+1, new_state)) {

ERROR();
}
break;

case 2:
if(!process(state, &new_state, 0, ny1_eq_y1[depth]))

break;
if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;
{

value * saved_state = new_state;
if (process(saved_state, &new_state, 0, y2_eq_0[depth]) &&

!bakery_step(3, pc2, depth+1, new_state)) {
ERROR();

}
if (process(saved_state, &new_state, 0, y1_lt_y2[depth]) &&

!bakery_step(3, pc2, depth+1, new_state)) {
ERROR();

}
ics_deregister(saved_state);
free(saved_state);

}
break;

case 3:
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if (!process(state, &new_state, 0, y1_eq_0[depth+1]))
break;

if (!process(new_state, &new_state, 1, ny2_eq_y2[depth]))
break;

if (!bakery_step(1, pc2, depth+1, new_state)) {
ERROR();

}
break;

}

switch(pc2) {
case 1:
if(!process(state, &new_state, 0, ny2_eq_y1_plus_1[depth]))

break;
if(!process(new_state, &new_state, 1, ny1_eq_y1[depth]))

break;
if (!bakery_step(pc1, 2, depth+1, new_state)) {

ERROR();
}
break;

case 2:
if(!process(state, &new_state, 0, ny1_eq_y1[depth]))

break;
if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;
{

value * saved_state = new_state;
if (process(saved_state, &new_state, 0, y1_eq_0[depth]) &&

!bakery_step(pc1, 3, depth+1, new_state)) {
ERROR();

}
if (process(saved_state, &new_state, 0, y2_lt_y1[depth]) &&

!bakery_step(pc1, 3, depth+1, new_state)) {
ERROR();

}
ics_deregister(saved_state);
free(saved_state);

}
break;

case 3:
if (!process(state, &new_state, 0, y2_eq_0[depth+1]))

break;
if (!process(new_state, &new_state, 1, ny1_eq_y1[depth]))

break;
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if (!bakery_step(pc1, 1, depth+1, new_state)) {
ERROR();

}
break;

}

// ics_deregister(state);
// free(state);

return 1;
}

int main(int argc, char ** argv)
{
ics_caml_startup(1, argv);
cout << "depth = " << argv[1] << endl;
int depth = atoi(argv[1]);
cout << "ICS Started...\n";
init_arrays(depth);
cout << "Atoms initialized...\n";

value * ini_state = ics_context_empty();
process(ini_state, &ini_state, 0, y1_ge_0);
process(ini_state, &ini_state, 0, y2_ge_0);

MAX_DEPTH = depth;

if (!bakery_step(1, 1, 0, ini_state))
cout << "ERROR...." << endl;

cout << "calls to ICS = " << CALLS_TO_ICS << endl;
return 0;
}

extern "C" {

void ics_error(char * funname, char * message) {
cerr << "ICS error at "

<< funname
<< " : "
<< message
<< endl;

exit(1);
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}

}
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