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1 Introduction

ICS (Integrated Canonizer and Solver) is a decision procedure developed at SRI International.
It efficiently decides formulas in a useful combination of theories, and it provides an API that
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makes it suitable for use in applications with highly dynamic environments such as proof search or
symbolic simulation.

The theory decided by ICS is a quantifier-free, first-order theory of equality with terms built
from the combination of

U uninterpreted functions,

LA linear arithmetic (real and integer),

NL power products (nonlinear arithmetic),
P products,

cop  coproducts (direct sums),

ARR functional arrays,

BV fixed-sized bitvectors,

PSET propositional sets, and

app  functional abstraction and application.
This combination is particularly interesting for many applications in the realm of software and
hardware verification, since the combinations of a multitude of datatypes occur naturally in system
specifications and the use of uninterpreted function symbols has proven to be essential for many
real-world verifications.

The core of ICS is a congruence closure procedure for the theory of equality and disequal-
ity with both uninterpreted and interpreted function symbols. The concepts of canonization and
solving have been extended to include inequalities over linear arithmetic terms. ICS is capable of
deciding sequents such as

o x+2 =y |- f(a[x:=3][y-2]) = f(y-x+1)
e f(y-1)-1 = y+1, f(x)+1 = x-1, x+1 =y |- false

o f(f(x)-f(y)) <> f(z), v <=x, y > x+tz, z > 0 |- false

These formulas contain uninterpreted function symbols sucheesl interpreted symbols drawn

from the theories of arithmetic and the functional arrays. The list of interpreted theories above

is open-ended in the sense that new theories can be added to ICS as long as they are canonizable
and algebraically solvable. The modular design of ICS—both the underlying algorithms and their
implementation—supports such extensions.

One of the main problems in employing decision procedures effectively is due to the fact that
verification conditions usually depend on large contexts. In addition, these contexts change fre-
guently in applications such as symbolic simulation or backtracking proof search. Consequently,
decision procedure systems that are effective in these domains must not only be able to build up
contexts incrementally but they must also support efficiently switching between a multitude of
contexts. ICS meets these criteria in that all of its main algorithm work incrementally and the data
structures for representing contexts are persistent, that is, operations on data structures do not alter
the previous values of data anddooperations are therefore for free.

ICS is implemented i®caml which offers satisfactory run-time performance, efficient garbage
collection, and interfaces well with other languages such as C.

There is a well-defined API for manipulating ICS terms, asserting formulas to the current
database, switching between databases, and functions for canonizing terms. This API is packaged
asa



e aC library,
e anOcaml library, and
¢ a CommonlLisp interface.

The C library API, for example, has been used to connect ICS with PVS, and both an interaction
and a batch processing capability have been built using this API.

The efficiency and scalability of ICS in processing formulas, the richness of its API, and its
ability for fast context-switching make it possible to use it as a black box for discharging veri-
fication conditions not only in a theorem proving context but also in a multitude of applications
like static analysis, abstract interpretation, extended type checking, symbolic simulation, model
checking, or compiler optimization.

1.1 Availability

For academic, non-commercial use ICS2.0 is available free of charge under a license agreement
http://ics.csl.sri.com/fm-1license.pdf

with SRI. ICS is also an integral part of PVS 310. The complete sources and documentation of
ICS are available at

ics.csl.sri.com
Binaries for many popular hardware architectures and operating systems including Linux, Mac

OSX, Solaris, and Windows XP can also be found there.

1.2 Organization

This document describes the interfaces and implementation aspects of the ICS decision procedures.

2 Installation

Before trying to compile ICS on your prefered hardware architecture and operating system one
might try one of the ICS binaries provided in the download sectiarratcs1.sri.com. Compi-
lations should only be necessary for developers or if ICS is used on a “nonstandard” platform.

Distribution. The fileics2.0.tar.gz can be downlowded fromcs.csl.sri.com. Unpack
this file using

> tar zxvf ics2.0.tar.gz


http://ics.csl.sri.com/fm-license.pdf
ics.csl.sri.com
ics.csl.sri.com
ics.csl.sri.com

This creates a directory/ics with the following files and subdirectories.

Makefile.in . Template for generatingakefile.
fm-license.pdf : Noncommercial license.

bin/ . Binaries

configure . Configuration script

lib/ . Archives and shared object files

README . Short installation guide

doc/ :  Documentation files

obj/ . Objectfiles

sat/ . Sources for propositional SAT solver (in C++)
src/ . Source files for core ICS (in Ocaml and C)
ics . Shell script for invoking ICS interactor

Installation Requirements. ICS is written mainly inOcaml, and it uses uses arbitrary precision
rational numbers from the GNU multi-precision library (GMP). To compile ICS one needs to
install:

e Ocaml version 3.06 or later. Freely availablerat:p: //caml.inria. fr.

e GNU MP version 4.1 or later. This package is freely availabletato: / /www. swox.com/
gmp/.

Installation.

1. The configuration script generate8akefile from theMakefile.in.

> ./configure [--with-gmp=/path/to/gmp] [--prefix=/path/to/installation]

Theprefix option specifies the path for installing ICS binaripsdfix defaults to/usr/local/bin.
The optionalvith-gmp option is used to specify the path to a particular GMP library. Config-
ure tries to find an appropriatep package, but this automatic search is somewhat unreliable
and might fail on some computer systems. In this case, you have to locate an appropriate
gmp and run configure with theith-gmp option.

2. Now, make compiles ICS on your machine.

> ./make

Binaries are placed in/bin/$ (ARCH) / and the libraries in /1ib/$ (ARCH) /, whereARCH
is the architecture guessed by the configuration script.

C compilers on some operating systems suclyason 0s x are not able to build dy-
namic libraries using theshared option. In these cases it is necessary to edit the generated
Makefile and disable the creation oibics.so manually.
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3. The build directory is. /obj/$ (ARCH) /, and the generated binary and byte code are put in
./bin/$ (ARCH) /. The binaries are installed at the location specified bythe ix option
to configure above using the following command.

> make install

3 The ICS interactor

The interactor permits processing formulas interactively and to explore the database. We give an
overview of the capabilities of ICS using various little examples.
The interactor is started with/ics in the ICS home directory.

> ics

ICS 2.0 (Experimental, August 10 2003): Integrated Canonizer and Solver.
Copyright (c) 2003 SRI International.

Type "help help.’ for help about help, and 'Ctrl-d’ to exit.

ics>

The ‘ics>’ is the prompt and ICS is ready to interpret your commands. All commands are termi-
nated by a !’. Help about available commands and the syntax of input is obtained using the
command.

help - Display all commands
help <term> - Display definition of nonterminalterm>
help assert - Display description of commangssert

3.1 ICSin action

ICS can either be used in batch, interactive, or in server mode. Here we demonstrate some of the
capabilities of ICS using its interactive mode. ICS maintairstadewhich can be manipulated

and queried by a series of command. Most importantlyateert command extends the current
logical state with a new fact. The following command, for example, adds an equality over terms
built from the the variable and the uninterpreted function symkol

ics> assert f(f(f(x))) = £(x).
:0k sl

It adds this fact to the current logical, which can be queried usingtthe command.

ics> ctxt.
:val {f£(£(f(x))) = £(x)}

In addition, theassert command generates a fresh name, berdor the extended state and keeps
this association in a symbol table.



ics> symtab.
:val empty |-> state({})
sl |-> state({f(f(f(x))) = £(x)})

Now, asserting the equality(f (f (x))) = f(x) to the current logical state yieldsalid, since
indeed this equality logically follows from the previously asserted equality using congruence clo-
sure.

ics> assert f(f(
f

f(E(£(x))))) = £(x).
:valid {f(x) = £(£(f(
In this case, the current state is unchanged. ICS also returns a subset of the asserted equalities,
the so-calledustification from which the validity of the asserted atom follows. Such a justifi-
cation is not necessarily minimal. The generation of dependencies can be disabled by using the
-dependencies flag when calling the ICS interactor.

Validity of equalities is established in ICS usicgnonization For example, canonizing the
left-hand and the right-hand side of the equality above both yields the (internally generated) vari-

ablev!1.

ics> can f(x).

:term v!l

:justification {}

ics> can f(E(£(£(f(x))))).

tterm v!l

:justification {f(x) = £(£(£(x)))}

The second result afan is a justification for the equality between the argument and the resulting
term. Since the canonical forms of these terms are identical in the current context, the equality
f(f(f(x))) = f(x) holds indeed. Simplification of atoms is performed using dheplify
command.

ics> simplify f(x) = £(£(£(£(£(x))))).
:atom tt
:justification {f(x) = f(f(f(x)))}

Processing of new facts usingsert is done by building up an internal representation, which
can be queried using th&.ow command. The current state after processing(f (x))) = f(x),
for example, is obtained by introducing names for all subterms in this equality.

ics> show.

:state

ve [v!1l |-> {v!3}]

u: {v!l = £(x), v!2 = £(v!l), v!3 = £(v!2)}



Thus,f (f (f (x))) equalst (£ (v!1)), f(v!2),v!3,and,finally,y!1. Thev part of the state above
represents the variable equalityl = v!3 with v!1 thecanonicalrepresentative of the generated
equivalence class, whereas theart consists of equalites = f(...) with x a variable, and
f(...) aflat term with only variables as arguments. Notice that ICS does not keep the left-hand
side of equations in in canonical form. Also, equations in thepart are not necessarily in solved
form, that is, an equation of the formm= £ (x) may be added.

ICS supports also a number of interpreted theories in the combination with uninterpreted func-
tion symbols. Let’s first reset the current context to the empty context.

ics> reset.

:unit

ics> assert z = £(x - y).
:0k sl

Here,x - vy is interpreted as the difference betweeandy in the theory oflinear arithmetic
Besides the variable equalitiesand the set: of uninterpreted equalities, the resulting logical state
also contains a setof linear arithmetic equalities.

ics> show.
:state
vilz |-> {v!2}]
u: {v!2 = f(v!'l)}
la: {v!l = -1 * y + x}

Since the ternt (x - y) in the input equality contains both the uninterpreted function symbol
and the interpreted function symbalit is rewritten asf (v!1) with v!1 = -y + x, withv!1l a

fresh variable. In contrast to equalitiesinequality sets for interpreted theories are always in
solvedform, that is, a variable on the left-hand side does not occur on any right-hand side. Now,
x = z + y IS asserted to statal by solving it for the largest—in some given ordering—variable

y, and deducing that!1 is equal toz. Now, v!1 is replaced withz in right-hand sides of;,

and, since the non-canonicall does not occur in any of the equality sets anymore, the variable
equality betweer ! 1 andz can safely been forgotten.

ics> assert x = z + vy.

:0k s2

ics> show.

:state
vilz |-> {v!2}] with: [z |-> real]
u: {v!2 = f(z)}
la: {y =x+ -1 * z}

Asserting the disequalityy <> -(x - f(f(z)) yields unsatisfiability.



ics> assert -y <> —-(x - £(f(z))).
:unsat {-1 * x + £(f(z)) <> -1 *vy, x =y +2z, z=15(-1 *y + x)}

That is, the conjunction of the facts in the current context with this disequality has been shown
to be unsatisfiable. The current state is unchanged in this case. This inconsistency is detected by
canonization, since the canonical forms-g@fand- (x - £ (f(z))) are identical in context2.

ics> can -y.
:term -1 * x + z
:justification {x =y + z}
ics> can - (x - f(f(z))).
tterm -1 * x + z
:justification {x =y + z, z = £(-1 * y + x)}

Besides arithmetic, ICS includes other theories such as the theory of products, functional ar-
rays, coproducts, or bitvectors, and the combination of the theory of tuples and coproducts is used
to describe abstract datatypes such as binary trees. The following shows an example for the combi-
nation of linear arithmetic, the theory arrays with function upddte: =x] and lookupa[i], and
uninterpreted functions.

ics> reset.

:unit

ics> assert xt+2=y.

:0k sl

ics> assert f(al[x:=3][y - 2]) = f(y - x +1).
:valid {y = 2 + x}

The next example demonstrates the combination of linear arithmetic with S-expressions built from
the pairing functioncons (., .) and the first and second projectiear (.) andcdr(.), and
uninterpreted functions.

ics> reset.

:unit

ics> assert 2 * car(x) - 3 * cdr(x) = f(cdr(x)).

:0k sl

ics> assert f(cons(4 * car(x) - 2 * f(cdr(x)), y)) = f(cons(6 * cdr(x), y)).
:valid {-3 * cdr(x) + 2 * car(x) = f(cdr(x))}

Again, variables are introduced for abstracting terms and thesstatiso contains an equality sets
for the theory of products.

ics> show.
:state



u: {v!3 = f(v'!'l)}

la: {v!3 =2 *v!2 + -3 * v!l}
p: {v!l = cdr(x),

v!2 = car(x)}

So far, we have only dealt with equalities and disequalities, but constraints over inequalities
with arithmetical operations appear in almost all verification conditions from simple sequential
programs over reactive, real-time, and hybrid systems. It is crucial to tightly integrate equality and
inequality reasoning in that equalities are propagated to all known inequalities, and the inequality
reasoner generates all possible equalities. In ICS, we achieve such an efficient integration using
slack variables to reduce problems about inequalities to equality reasoning and simple constraint
propagation. For example, the equalitxk= y + 2 is reduced to the equality - v - 2 = k!1
with k!1 a newly generated, non-negatisiack variable This equality is solved for the largest
variabley and asserted to the equality set

ics> reset.
:unit
ics> assert x <=y + 2.
:0k sl
ics> show.
:state
la: {y = -2 + x + k!'l}

Now, the inequalityy <= z + 4 is rewritten as the nonnegativity constraintt z + -1 * x +
-1 * k!1 >= 0 and a new slack variable! 2 is introduced to express this constraint in terms of
an equality, which is solved for the largest variable

ics> assert y <= z + 4.
:0k s2
ics> show.
:state la: {y = -2 + x +k!l, z = -6+ x + k!2 + k!1}

The inequalityz + 6 <= x is reduced to the nonnegativity constraint: z + -1 * x >= 0,
andé + z + -1 * x = k!3, with k!3 and the equality is solved and merged into ststeo
obtains3.

ics> assert z + 6 <= x.
:0k s3
ics> show.
:state
la: {y=-2+x +k!l, z=-6+x+ -1 * k!2}

In effect, the implied equalities = vy + 2andx = z + 6 are respected by the canonizer.
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ics> can x.
:val x
:justification {}

ics> can y + 2.
:val x
:justification {2 + y + -1 *x>=0, 4+ z+-1*y>=0, -6+ -1%*2z+ x> 0}

ics> can z + 6.
:val x
:justification {2 + vy + -1 * x>= 0, 4+ z + -1 *y>0, -6+ -1*2z+ x> 0}

One distinguishing feature of ICS is its management of dynamics contexts. In the example
above, all intermediate states are maintained in a symbol table.

ics> symtab.
:symtab [
empty [-> [];
sl |-> [2 +y + -1 * x >= 0];
s2 |-=> [4+z+-1*y>0; 2+y+-1%*x>0];
s3 |->[-6+-1*2z+x>0; 4+z+-1*y>0, 2+y+-1%*x> 0]

Most commands can access a state directly through its name in the symbol table. For example, the
logical context of the second state is obtained using the commatds?2.

ics> ctxt@s2.
ival {-4 + -1 * z + y<=0, -2+ -1 *vy + x<=0}

Names are also used for asserting facts to specific contexts. The following command, for example,
extends the state3 with the disequalityx <> 2.

ics> assert@s3 x <> 2.
:0k s4

Now, s4 is the current state, byt can be restored to be the current state using

ics> restore s2.

Thus, the ICS interface includes the management of dynamic contexts, which is important for
using it as a verification backend in symbolic simulation or proof search.

Dynamic contexts are also used in extending the core ICS as described above with a SAT
solver for deciding the satisfiability of Boolean combinations of equalities and inequalities. Such
a decision procedure is available as the command Obviously, the following Boolean formula
is unsatisfiable |( denotes disjunctior, is conjunction, and brackets ] are used for grouping.
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4] & x > 5.

I
—
b
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ics> sat [x
:unsat

In case such a propositional formula is satisfiable, a conjunction of atoms is returned for implicitly
describing aset of satisfying assignments

ics> sat [x =1 | x=2 | x=3] & x > 1.
:sat sb
:model [-1 + x > 0; x = 3]

Here, all assignments tosatisfying both-1 + x > 0 andx = 3, describe models for the input
formula. Here, there is obviously only one possible assignent, and the description is not mini-
mal. In addition, a new context, of name, is created for these set of assignments. Using only
propositional variables, theat command reduces to a Boolean satisfiability solver.

ics> sat p & [~p | r].
:sat s6
:model [r |-> true; p |-> true]

3.2 The Command Language
The ICS command language realizeask/tellinterface to a context consisting of known facts.
Each command is followed by a”.
Asserting facts.
assert [@<ident>] <atom>,...,<atom>
An assert atm adds the atomtm to the current context. There are three possible outcomes:

1. atomis inconsistent with respect to the current context. In this casesrt leaves the
current context unchanged and outpuissat on the standard output. In additionjuestifi-
cationin terms of an inconsistent subset of the current context is output if the generation of
justifications is enabled.

2. atomis valid in the current context. Again, the the current context is left, and nawid
is output.

3. Otherwise, in casatomhas neither been shown to be valid nor inconsistent in the current
context, the current context is modified to include new information obtained &tom In
addition, a new name is generated for this context and a symbol table entry is added for this
name. The result is of the forrok si.
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Notice that the resultok does not necessarily mean that the database is indeed consistent, since the
language accepted by ICS is undecidable. As long as one restricts oneself to a decidable fragment
(such as the union of convex Shostak theories) of the ICS input langusigean be interpreted
to mearsatisfiable For nonconvex theories such as functional arrays and linear integer arithmetic,
thesplit command can be used for case splitting. In contrast, a resaltid indicates that the
current atom is indeed valid in the current context, andsat indicates that the current context
conjoined with the currently asserted atom is indeed unsatisfiable.

assert@s atmworks as explained above but the atom is asserted to the cantettte current
symbol table, andssert@s atml, ..., atm asserts the conjunction of atonasnl to contexts.
ExamplesAsserting the equalities(v) = vandf (u) = u - 1 yields new contexts of name
ands2. Only after asserting = v is a contradiction detected.

ics> assert f(v) = v.
:0k sl

ics> assert f(u) =u -1
:0k s2

ics> assert u = v.
:unsat {v = £f(v), u=v, -1 +u=£f(u)}

Names of context such asl may also be used to address contexts in the symbol table as in
assert@sl below.

ics> assert x
:0k sl

ics> assert y
:0k s2

ics> assert@sl y = 2.

:0k s3

ics> symtab s3.

:state v:[x |-> {y}] la: {x = 2}
ics> ctxt.

ratoms [x = vy; y = 2]

Il
=

Il
N

See Alsosymtab3.2,

Canonization.
can <term>

For atermt, can t returns a term, which is @anonicalrepresentative of the equivalence class of

t as induced by the atoms in the current context. If the generation of dependencies is enabled, then
also a justification of the equality betweemndcan t is returned. There are no side effects.

See Alsosimplify3.2
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Simplification.
simplify <atom>

simplify a returns an atom equivalenttan the current context. If proofmode is enabled, then,
in addition, a justification of this equivalence is return8de Alsocan3.2

Logical Context.
ctxt [@<ident>]

ctxt returns the set of atoms asserted in the current logical context;tands returns the set
of asserted atoms in state 's’ from the symbol table. These atoms are not necessarily in canonical
form.

Term Definition.
def <ident> := <term>

Extend the symbol table with a definiticrident> for term <term>. In such a context, variable
<ident> iIs always macro-expanded taerm>, but different occurrences dérmare structure-
shared. Alsosident> may occur inkterm>, since the expansion is not performed recursively.
Examplesdef x := y + z

Disequalities.
diseqg [@<ident>] <term>

Returns a list of variables known to be disequakterm> in the contextcident> or the current
context if<ident> is not specified. In addition, in proof generation mode, justifications for each
disequality are returned

Exit.
exit

Exit the ICS interactor. Alternatively,t r1-D can be used.

Clearing current logical context.
forget .

Resets the current logical context to the empty context. In contraststex, all other ICS data
structures are left unchanged.
Examples:
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ics> assert x = y.
:0k sl

ics> ctxt.

:val {x = vy}

ics> forget.

:unit

ics> ctxt.

:val {}

See Alsoreset3.2, symtab3.2, forget3.2

Finds in solution sets.
find [@<ident>] <th> <term>

If the equalityx = tis, in the current context, in the equality set for theoty>, saya, thenfind

a x returnst and otherwise. The addressingind@sl a x may be used to address the solution
set for, say, the arithmetic theory in the contextin the symbol table.

See Alsoinv3.2

Help.
help [<command> | < <nonterminal> >]

Help about ICS interactor commands and syntactic categories.
Examples.

help Display all commands

help help Display this message

help <term> Display definition of nonterminadterm>

help assert "Display description of commangksert

Inverse find in solution sets.

inv [@<ident>] <th> <term>

If the equalityx = t is, in the current context, in the specified solution set for the specified equality
theory, saya, theninv a x returnst and otherwiselone. The addressingnvésl a x may be
used to address the solution set for, say, the arithmetic theory in the centiexhe symbol table.

See Alsofind3.2

Definition of Propositions.

prop <ident> := <prop>

Extend the symbol table with a definitiorarfor the propositiorproposition In such a context,
variablevaris always expanded fgropositiorbut different occurrences pfopositiorare structure-
shared. see also commadel. This command fails if there is alreadyarin the symbol table.
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Resetting.
reset

Reinitializes all internal data structures including setting the current logical context to the empty
context and the symbol table is emptied out.

Restoring logical contexts.
restore <ident>

Updating the current logical state to be the state namedibyt in the symbol table.
See Alsosymtab3.2

Removing symbol table entries
remove <ident>

Remove the symbol table entry correspondingi@ent>.
See Alsosymtab3.2

Saving the current logical context.
save [<ident>]

Adding a symbol table entryarfor the current logical state.
See Alsosymtab3.2, forget3.2,

Satisfiability Solver.
sat [@<ident>] <prop>

A satisfiability solver for propositional formulas over atoms. Retunnssat if the formulas has
been shown to be unsatisfiable :afat together with an assignment to the Boolean variables and
the truth values of the atoms in a satisfying assignment. In addition, a name is added in the symbol
table for the state corresponding to the conjunction of the atoms in a satisfying assignment, but the
current logical state is unchanged.

Examples: Literals might be just Boolean variables and the satisfibility of the Boolean probem
(1 is disjunction,s is conjunction is exclusive or, and is negation) is tested as follows.

ics> sat x | v | [z & ~x] # y.
:sat (sl) [x |-> true]

Notice that brackets and] as in[z & %] are used for structuring propositional formulas. The
values for the variableg andz aredon’t caresand therefore not explicitly stated. In addition to
Boolean formulas, the commandt also handles Boolean formulas over atomic constraints.

ics> sat x >y & [y = 2 # ~[x <> 3]].
isat(sl) [-1 *y + x>0; y <> 2; x = 3]

Now, each possible assignmentstaandy, which satisfy the given constraints, is a candidate
satisfying assignment of the input formula.
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Signature Declaration.
sig <ident> : <sig>

Declare a variableident> to be interpreted over the set of bitvectors of widtbr the integers

or the reals. For example, after declarsigy x : int, every occurrence of the variahtas in-
terpreted to mean the variabi¢int }, that is the variable of namewith associated interpretation
domainint. Notice that ICS treatgandy { int } as different variables. Bitvector variables have to

be declared before use, when using infix operators, since context information is used for inferring
parameters when applying infix bitvector operators.

Sigmatization.
sigma <term>

Computes the normal form of a term using theory-specific canonizers for terms in interpreted
theories and some builtin simplifications for uninterpreted terms. This command leaves the current
state unchanged.

See Alsocan3.2, simplify3.2

Displaying the context.
show [@<ident>] [<th>]

Displays the current logical state which consists of a

Variable equalities. Thev part represents a set of equalities over variables. For example

vila [-> {a, b}; x |—> {x, vy, z}]

says that andb are equivalent and that y, andz are equivalent. The canonical represen-
tatives each the two non-trivial equivalence classes anmedx.

Variable disequalities. Thed part is just a conjunction of disequalities over variables

dily <> x; z <> vy]

The set of variables known to be disequal can also be obtained usiagste command.

Variable constraints are conjunctions are sign interpretations for internally generated slack vari-
ables. This information is used, for example, by then command.

Theory-specific solution sets.A theory-specific solution set is a conjunction of equalities
t with x a variable andt a non-variable term with function symbols in only one theory.
Variables in terms might also be internally generated variables of the fotm For all
interpreted theories, the equations in a solved form are actually solved in that varialles
arhs do not occur in any of the |hs. The solution sets can be queried withtheinv, and
theuse command.
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Slack equalities. Are equalities between internally generated slack variables. These equalities
can not be manipulated or queried with any other command.

See Alsoctxt3.2,

Solving.
solve <th> <term> = <term>

Theory-specific solver for input equality. Returns either a solved list of equalities with variables
on the Ihs which is, in the given theory, equivalent to the input equalityvasat if the input
equality is unsatisfiable. There are solvers for linear arithmetg, tuples ¢), bitvectors bv),
and propositional sets.

ExamplesThe first example demonstrates solving in the théargf linear arithmetic.

ics> solve la x + 2 =y - 3.
:subst [y |-> 5 + x]

Solving in the theory of pairs might introduce fresh variables suct? below.

ics> solve p car(x) = cons(u, V).
:subst [x |-> cons(cons(u, v), cdr(x))]

The following illustrates solving in the theory of bitvectors.

ics> sig x2 : bitvector[2].
runit
ics> sig x3 : bitvector[3].
:unit

ics> solve bv x2 ++ 0b10 = 0bl0 ++ x2.
:val [x2 = 0bl0]
ics> solve bv x3 ++ 0b10 = 0bl0 ++ x3.
:unsat

Symbol Table.

symtab [<ident>]

symtab display the current symbol table, asghnt ab vardisplays the symbol table entry associated
with var. Such an entry might either be a logical context entry, a term definition, a definition of a
proposition, or a signature entry for domain restrictions of variables.

Examples:
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ics> assert x = y.
:0k sl
ics> symtab.
:symtab
empty [-> []
sl |[-> [x = y]

ics> def x =y + z.
runit
ics> prop z := a | b.
:unit
ics> symtab.
:symtab [
empty |-> [];
X |=>z + vy;
sl [-> [y = x];
z |-> a | b]

ics> sig x : bitvector[2].
:error Name x already in table

ics> sig b : bitvector[2].
:unit
ics> sig g : int.

runit
ics> symtab.
:symtab|

empty [-> [];

X |=>z +vy;

sl [-> [y = x];

z |->a | b; b |-> bitvector[2];
g |-> int]

Trace.
trace <levels>

Tracing facility is used mainly for debugging purposes. However, usiage rule might some-

times be useful to analyze which facts are internally being asserted by ICS. Similarly, trace levels
such asy, d, 1a, can be used to trace updates on internal data structures.

See Alsountrace3.2,

Disable tracing.
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untrace [<levels>]

Disable specified trace levels. If no trace levels are given, all tracing is disabled.
See Alsorrace3.2,

Usually, the capabilites of ICS are not accessed through the interactor but rather through its
application programming interface. Currently, we support interfaces for C, Fortran, Lisp, and
Ocaml. We first describe the Ocaml interface, since the interfaces for the other programming
languages are automatically generated from this one.

4 Module 1cs : Application programming interface.

The ICS APl includes function for
e asserting formulas to a logical context,
¢ switching between different logical contexts, and
e manipulating and normalizing terms.

There are two sets of interface functions. Tiactional interface provides functions for
building up the main syntactic categories of ICS such as terms and atoms, and for extending logical
contexts usingcs.process[4], which is side-effect free.

In contrast to this functional interface, tttemmand interface manipulates a global state
consisting, among others, of symbol tables and the current logical context.cEhemd_rep[4]
procedure, which reads commands from the current input channel and manipulates the global struc-
tures accordingly, is used to implement the ICS interactor.

Besides functions for manipulating ICS datatypes, this interface also contains a number of
standard datatypes such as channels, multiprecision arithmetic, tuples, and lists.

val version : unit -> string
Returns this ICS’s version number.

Parameters
The following flags determine the curresanfigurationof ICS.
val set_profile : bool -> unit

Enable profiling of used time and memory resources for selected functions. Used mainly
for debugging.

val set_pretty : string -> unit
Determine pretty-printing.
e mixfix enables pretty-printing in mixfix and infix form,
e prefix disables mixfix and infix printing, and
e sexpr enables printing in terms of S-expressions of the f@wp argl... argn).
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val set_compactify : bool -> unit

set_compactify false disables garbage collection of internally generated variables
(defaultt rue).

val set_assertion_frequency : int -> unit

set_assertion_frequency n determines how often (frequency) the SAT solver sends
(the relevant) information to ground decision procedures.

val set_verbose : bool -> unit

Usingset_verbose true, the SAT solver reports all kinds of statistics and progress
reports (defaultalse).

val set_remove_subsumed_clauses : bool -> unit
Internal configuration of the SAT solver.

val set_validate : bool -> unit

With set_validate settotrue, the SAT solver validates all generated assignments and all
justifications for inconsistencies.

val set_polarity_optimization : bool -> unit
Internal configuration of the SAT solver.

val set_clause_relevance : int -> unit
Internal configuration of the SAT solver.

val set_cleanup_period : int -> unit
Internal configuration of the SAT solver.

val set_num_refinements : int -> unit

Internal configuration of the SAT solver.

val set_statistic : bool -> unit
Enable/Disable SAT solver to print statistics (defatlt se).

val set_show_explanations : bool -> unit

Display explanations generated for SAT solverfermat .err_formatter when flag is
enabled.

val set_justifications : bool -> unit
Print justifications of internally xgenerated facts (default se).

val set_integer_solve : bool -> unit
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Enable/disable integer solver (defauttie). Disabling the integer solver makes the
procedure incomplete, but (usually) faster.

val set_proofmode : string -> unit
ICS supports various proof modes.
e No disables generation of justifications
e Dep enables generation of dependencies (default).
e Yes enables generation of proof terms (disabled in ICS 2.0).

val set_gc_mode : string -> unit
Various settings for garbage collection
e Lazy delay garbage collection
e Eager garbage collection.

val set_gc_space_overhead : int -> unit
GC will work more if space_overhead is smaller (default 80).

val set_gc_max_overhead : int -> unit

Controlling heap compaction (default 500}, max_overhead >= 1000000 disables
compaction.

Channels
type inchannel = Pervasives.in_channel

inchannel is the type of input channels.

type outchannel = Format.formatter
Formattable output channel.

val channel stdin : unit -> inchannel

channel_stdin is the predefined standard input channel.

val channel_stdout : unit -> outchannel
channel_stdout is the predefined standard output channel.

val channel_stderr : unit -> outchannel

channel_stdout is the predefined standard error channel. All ICS trace messages are put
onto this channel.

val inchannel_of_string : string -> inchannel
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val

inchannel_of_string str opens an input channel for reading from a string (file name).
This function raisesys_error in case such a channel can not be opened.

outchannel_of_string : string -> outchannel

outchannel_of_string str opens an output channel for writing from a string (file
name). This function raises/s_error in case such a channel can not be opened.

Multi-precision arithmetic

type ¢

val

val

val

val

val

typ

val

Type for representing the rational numbers.

num_of_int : int -> g
num_of_int n constructs a rational from the integer

num_of_ints : int -> int -> g

num_of_ints n m, form <> 0, constructs a normalized representation of the rational
inq.

ints_of_num : g -> string * string

ints_of_num gdecomposes a rational with numerataand denumerator into ("n",
"mll) .

string_of_num : g -> string
string_of_num g constructs a string (usually for printout) of a rational number

num_of_string : string -> g

num_of_string s constructs a rational, whenewvers of the formn/m wheren andm are
integers.

Names
e name

Representation of strings with constant equality test.

name_of_string : string -> name

name_of_string str constructs a namefrom a string such that
Ics.name_to_string[4] (n) yieldsstr.
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val name_to_string : name -> string

name_to_string nis the inverse operation ats.name_of_string[4].

val name_eq : name -> name -> bool

name_eq n m holds iff the corresponding stringgs.name_to_string[4] (n) and
Ics.name_to_string[4] (m) are equal. This equality test is constant in the length of

strings.

Arithmetic domains
type dom
Arithmetic domains

val dom_mk_int : unit -> dom

val dom_mk_real : unit -> dom

val dom_is_int : dom -> bool

val dom_is_real : dom —> bool
Theories

type th

A theory is associated with each function symbol of terms.
e u Theory of uninterpreted function symbols.

e la Linear arithmetic theory.

e p Product theory.
e bv Bitvector theory.
e cop Coproducts.
e nl Power products.

e app Theory of function abstraction and application.

e arr Array theory.

e pset Theory of propositional sets

val th_to_string : th -> string

th_to_string th returns the unique name associated to theary

val th_of string : string -> th

th_of_string s returnstheoryh if to_string this s; otherwise the result is

unspecified.

Function symbols
type sym
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Representation of function symbols. Function symbols are partitioned into
¢ uninterpretedunction symbols (of theory) and

e interpretedfunction symbols from the theoriés, p, bv, cop, nl, cop, app, arr, and
pset above.

val sym_theory_of : sym -> th
sym_theory_of f returns the theoryh associated with the function symbaol

val sym_eq : sym —-> sym -> bool
sym_eq tests, in constant time, for equality of two function symbols.

val sym_cmp : sym -> sym -> int
sym_cmp f g provides a total ordering on function symbols. If it returns
e a negative integer, thenis said to be smaller than
e 0,thenf is equal tog andIcs.sym_eq[4] (f, g), and
e a positive numbe, thehis said to be larger than

val sym_is_uninterp : sym -> bool
sym_is_uninterp f holds iff f is an uninterpreted function symbol.

val sym_d_uninterp : sym -> name
sym_d_uninterp f returnsthe name associated with an uninterpreted function syimbol
This accessor is undefinedris . sym_is_uninterp[4] (f) does not hold.

Linear arithmetic function symbols are either
e numeralsfor representing all rational numbers,
e theadditionsymbols,

e symbols for representinighear multiplicationby a rational of typecs. g[4].

val sym_mk_num : g —> sym
sym_mk_num g constructs a numeral symbol for representing

val sym_is_num : sym -> bool
sym_is_num f holds iff £ represents a numeral.

val sym_d_num : sym —-> g
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sym_d_num f returns the rationaf if £ represents. This accessor is undefined if
Ics.sym_is_num[4] does not hold.

val sym_mk_add : unit -> sym
sym_mk_add () constructs the addition symbol.

val sym_is_add : sym -> bool
sym_is_add f holds iff £ represents the addition symbol.

val sym_mk_multg : g -> sym
sym_mk_multqg g constructs the symbol for linear multiplication by a rational

val sym_is_multg : sym -> bool
sym_is_multqg f holds iff £ represents a linear multiplication symbol.

val sym_d multg : sym -> g
sym_d_multqg f returnsgif f represents linear multiplication hy This accessor is
undefined ifics. sym_d_multg[4] does not hold.

Symbols of theproduct theory p consist of
e consing

¢ and first and second projectionsr, cdr.

val sym_mk_cons : unit -> sym
sym_mk_cons () constructs the symbol for tupling.

val sym_is_cons : sym -> bool
sym_is_cons f holds iff f represents tupling.

val sym_is_car : sym -> bool
sym_is_car f holds iff £ represents a projection.

val sym_mk_car : unit -> sym
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sym_mk_car () constructs the symbol for the first projection

val sym_is_cdr : sym -> bool
sym_is_cdr f holds iff £ represents a projection.

val sym_mk_cdr : unit -> sym
sym_mk_cdr () constructs the symbol for the first projection

Symbols of the theory afoproductsare eith
¢ left and right injections,

e left and right coinjections

val sym_mk_inl : unit -> sym
sym_mk_inl () constructs symbol for left injection.

val sym_is_inl : sym -> bool
sym_is_inl f holds iff f represents left injection.

val sym_mk_inr : unit -> sym

sym_mk_inr () constructs symbol for right injection.

val sym_is_inr : sym -> Dbool
sym_is_inr f holds iff £ represents right injection.

val sym_mk_outl : unit -> sym
sym_mk_outl () constructs symbol for left injection.

val sym_is_outl : sym -> bool
sym_is_outl f holds iff f represents left coinjection.

val sym_mk_outr : unit -> sym
sym_mk_outr () constructs symbol for right coinjection.

val sym_is_outr : sym -> bool
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sym_is_outr f holds iff f represents right coinjection.

Symbols in the fixed-sizebitvector theory include

constant bitvectors of length >= 0,

concatenation of a bitvector of width >= 0 with a bitvector of widthn >= 0,

extraction of bitsi throughj of a bitvector of lengtlh >= 0, (0 <= i <= j < n), and

bitwise conditionals for bitvectors of length

val sym_mk_bv_const : string -> sym

sym_mk_bv_const str constructs, say, a bitvector constamt01 from a string of the
form "01001". The result is undefined if characters other thanhor’ 1’ appear in the
string.

val sym_is_bv_const : sym -> bool
sym_is_bv_const f holds iff f represents a bitvector constant symbol.

val sym_mk_bv_conc : int -> int -> sym

sym_mk_bv_conc n m constructs a concatenation symbol with indieendm, forn, m
>= (0, for concatenating a bitvector of widthwith a bitvector of length.

val sym_is_bv_conc : sym -> bool
sym_is_bv_conc f holds iff f represents a concatenation symbol.

val sym_d_bv_conc : sym -> int * int

sym_d_bv_conc f returns(n, m) iff £ represents a concatenation symbol for bitvectors of
width n with a bitvector of widthm.

val sym_mk_bv_sub : int -> int -> int -> sym

sym_mk_bv_sub 1 J n constructs a bitvector extraction symbol for the indices= i <=
j < n.

val sym_is_bv_sub : sym -> bool
sym_is_bv_sub f holds iff f represents a bitvector extraction symbol.
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val sym_d bv_sub : sym —-> int * int * int
sym_d_bv_sub freturns(i, j, n) iff f represents a bitvector extraction of hits
through7y of a bitvector of widthn.

Symbols from the theory gfower productsinclude
e Multi-ary nonlinear multiplication symbol

e Exponentiation with an integer.

val sym_mk_mult : unit -> sym
sym_mk_mult () constructs the nonlinear multiplication symbol.

val sym_is_mult : sym —> bool
sym_is_mult f holds iff f represents the nonlinear multiplication symbol.

Symbols from the theory dtinction abstraction and application include
e function abstraction
¢ function application

A function application symbol may have a constraint of type. cnstrnt associated with it.
val sym_mk_apply : unit -> sym
sym_mk_apply co constructs a symbol for function application with associated constraint
CO.

val sym_is_apply : sym —-> bool
sym_is_apply f holds iff f represents the function application symbol.

val sym_mk_s : unit -> sym
sym_mk_s () constructs the symbol for triecombinator.

val sym_is_s : sym —-> bool
sym_is_s f holds iff £ represents the combinator.

val sym_mk_k : unit -> sym
sym_mk_s () constructs the symbol for thecombinator.
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val sym_is_k : sym -> bool
sym_is_k f holds iff £ represents the combinator.

val sym_mk_1i : unit -> sym
sym_mk_1i () constructs the symbol for tiecombinator.

val sym_is_1i : sym -> bool
sym_is_1i f holds iff £ represents the combinator.

Symbols from the theory dadrrays include
e array updates (write)

e array selection (read)

val sym_mk_select : unit -> sym
The array select symbol.

val sym_is_select : sym -> bool
sym_is_select f holds iff f represents the array selection symbol.

val sym_mk_update : unit -> sym
The array update symbol.

val sym_is_update : sym -> bool
sym_is_update f holds iff f represents the array update symbol.

Symbols from the theory gdropositional setsinclude
e empty set
o full set

e conditional set.

val sym_mk_empty : unit -> sym
The empty set symbol

val sym_is_empty : sym -> bool
sym_is_empty f holds iff f represents the empty set symbol.
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val sym_mk_full : unit -> sym
The full set symbol

val sym_is_full : sym -> bool
sym_is_full f holds iff f represents the full set symbol.

val sym_mk_ite : unit -> sym
The conditional set symbol

val sym_is_ite : sym -> Dbool
sym_is_ite f holds iff £ represents the conditional set constructor.

Terms
Terms are either

e variables or

e applications of function symbols of tyges . sym[4] to a list of terms.

type term
val term_of_string : string -> term

term_of_string parses a string according to the grammar for the nonterminal
Parser.termeof (See its specification in filearser.mly) and builds a corresponding
term.

val term_input : inchannel -> term

term_input inchis similartoIcs.term_of_string[4] but builds a term by reading
from input channelnch.

val term output : outchannel -> term -> unit
term_output outch a prints terma on the output channelut.

val term_to_string : term -> string

term_to_string a prints aterm to a string. This string is parsable by
Ics.term_of_string[4].

val term_pp : term —> unit
term_pp aisequivalenttcerm_output (Ics.stdout()) a.
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val term_eq : term -> term —-> bool
term_eq a b holds iff a andb are syntactically equal, that is, either
e botha andb are variables of the same kind and their associated names are equal

e botha andb are application terms with equal function symbols (see. sym_eq[4]),
the number of arguments inandb is equal, and the respective arguments at every
position are term equal.

val term_cmp : term -> term —> int

Comparisorterm_cmp a b returns either1, 0, or 1 depending on whetheris less tham,
the arguments are equal, ©rs greater tham.

e Variables are always greater than applications,
e variables are ordered accordingres . var_cmp, and

e applications are ordered lexicographically using . sym_cmp[4] on the function
symbols and comparing respective term arguments.

val term_mk_var : string -> term

Given a strings, term_mk_var s constructs amxternalvariable with name.

val term_mk_uninterp : string -> term list -> term

term_mk_uninterp s al constructs an application of an uninterpreted function symbol
to a listal of argument terms.

Linear arithmetic terms are built-up from rational constants, linear multiplication of a rational
with a variable, and n-ary addition.

Linear arithmetic terms are always normalized asiian-of-product g0 + gl*x1+...+gn*xn
where thegi are rational constants and the are variables (or any other term not interpreted in
this theory), which are ordered such that .term_cmp[4]xi x7 is greater than zero far < 5.
This implies that any such variable occurs at most once. In addiigripr i > 0, is never zero.

If gi is one, we just writexi instead ofgi * xi, and if g0 is zero, it is simply omitted in the
sum-of-product above.

Terms in this theory include rational constants built frogm_mk_num g, linear multiplication
term_mk_multqg g a, additionterm_mk_add a b of two terms, n-ary additionerm_mk_addl
al ofalistof termsal, subtractionerm_mk_sub a b oftermb fromterma, negatiorterm_mk_unary_minus
a, multiplicationterm_mk_mult a b, and exponentiationerm_mk_expt n a. These construc-
tors build up arithmetic terms in a canonical form as defined in magitileh. term_is_arith a
holds iff the toplevel function symbol of is any of the function symbols interpreted in the theory
of arithmetic.

val term_is_arith : term -> bool
term_is_arith a holds if the toplevel symbol of is interpreted in linear arithmetic.

val term mk_num : g -> term
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term_mk_num g constructs a numeral term for representing the ratignal

val term_mk_multg : g -> term -> term

term_mk_multqg g a constructs a term for representing the termultiplied byq. If a is
in sum-of-product form, then so t&rm_mk_multq gq a.

val term_mk_add : term -> term -> term

term_mk_add a b constructs a term for representing the sum ahdb. If both a andb
are in sum-of-product form, then sotisrm_mk_add a b.

val term mk_addl : term list -> term
Iteration of binary addition

e term mk_addl []iSIcs.term_mk_num(),
e term mk_addl [a] iSa, and
e term mk_addl (a :: al)iSterm mk_add a (term_mk_addl al).

val term_mk_sub : term -> term -> term

term_mk_sub a b represents the differenee- b. If both a andb are in sum-of-product
form, then so is the result.

val term_mk_unary_minus : term -> term

term_mk_unary_minus a represents the negationaflf a is in sum-of-product form,
then so is the result.

Tuple terms. Tuple terms in normal form do not contain (applicable) projections on tuples.
val term_mk_tuple : term list -> term

term_mk_tuple [al;...;an] constructs tuple term for respresenting the tuple
(al,...,an). Theresultis in tuple normal form, when all are in tuple normal form

val term_mk_proj : int -> term -> term

term_mk_proj i a constructs, fon <= i < n, aterm for representing thieth projection
of ann-tuple. If a is in tuple normal form, then so is the result.

Bitvector terms are built up from bitvector constants, concatenation of two bitvectors, extrac-
tion of a contiguous subrange from a bitvector, and logical bitwise operations. Each bitvector term
has a nonnegatiweidth associated with it, and bits in a bitvector of widttare addressed from
ton-1 in increasing order from left-to-right. All bitvector terms arecioncatenation normal form
that is, a left-associative concatenation of
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e terms uninterpreted in the bitvector theory

e bitvector constants (with adjacent constants merged)

e single extractions from uninterpreted terms in this theory

e bitvector BDDs, which are BDDs with nodes consisting of one of the above classes of terms.

The constructors below all construct concatenation normal forms, whenever their arguments
are in this form.

val term_mk_bvconst : string -> term
term_mk_bvconst str constructs a bitvector constant.

val term_mk _bvsub : int * int * int -> term -> term

term_mk_bvsub i j n aconstructs, fon <= i <= j < naterm for representing the
extraction of thej-i+1 bits from positioni through in a term of widthn.

val term_mk_bvconc : int * int -> term -> term -> term

term _mk_bvconc n m a b constructs the concatenatian++ b of bitvector terms: of
width n with b of width m.

Boolean Constantsaretrue andfalse.
val term_mk_true : unit -> term

The propositional constantrm_mk_true () is encoded as the bitvector constant of width
1 with a1 at positiono.

val term_mk _false : unit -> term

The propositional constantrm_mk_false () is encoded as the bitvector constant of width
1 with a0 at positiono.

val term_is_true : term -> bool
term_is_true a holdsiffa isterm equal taerm_mk_true ().

val term_is_false : term -> bool
term_is_false a holdsiffaisterm equal taerm_mk_false ().

Coproducts consist of
e injectionsinj n
e outjectionsout n.
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val term mk_inj : int -> term -> term
term_mk_inj n a constructs a term fat-ary injection.

val term _mk_out : int -> term -> term
term_mk_out n a constructs a term fat-ary outjection.

Array terms are built up from
e constant arrays
e updates of arrays

e |lookup of arrays.

val term_mk_create : term -> term

term_mk_create arepresents an array with elemeats

val term_mk_update : term -> term -> term -> term
term_mk_update a i xrepresent an arrayupdated at positiot with valuex.

val term mk_select : term —-> term —-> term
term_mk_select a jrepresents the value of arrayat positionj.

Nonlinear terms are sum-of-products with power products*nl * ... an”nk with ai
terms anchi integers at uninterpreted positions.

val term_mk_mult : term -> term -> term

term_mk_mult a b constructs a nonlinear term for representing the multiplicationarid
b.

val term mk_multl : term list -> term

term_mk_multl [al;...;an] constructs a nonlinear term for representing the
multiplicational * ... * an.

Function application
val term_mk_apply : term -> term -> term

term_mk_apply a b represents the application @f viewed as a function, to the argument
b.
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type terms
Representation of a set of terms.

val terms_of_list : term list -> terms
Constructing a set of terms from a list of terms.

val terms_to_list : terms -> term list
Converting a set of terms into a list of terms.

Atoms
type atom
An atomis either
the trivially true atomatom_mk_true,
the unsatisfiabletom_mk_false,
an equality atomtom_mk_equal a b,
a disequality atomtom_mk_diseq a b, Or

a constraint atomtom_mk_in a c, which constrains to be interpreted over the
domainD (c) associated with the constrainbf typeIcs.cnstrnt.

val atom_pp : atom -> unit
Pretty-printing an atom tetdout.

val atom_of_string : string -> atom
Parsing a string to obtain an atom.

val atom_to_string : atom -> string
Printing an atom to a string.

val atom_mk_true : unit -> atom
Constructing the trivially true atom.

val atom_mk_false : unit -> atom
Constructing an unsatisfiable atom.

val atom_mk_equal : term -> term -> atom
atom_mk_equal a b constructs an atom for representing the equality betveesmdb.

val atom_mk_diseq : term -> term -> atom
atom_mk_diseq a b constructs an atom for representing the disequality afidb.

val atom_mk_le : term -> term -> atom
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atom_mk_le a b constructs an atom for representing= b.

val atom_mk_1t : term -> term -> atom
atom_mk_lt a b constructs an atom for representing b.

val atom_mk_ge : term -> term -> atom
atom_mk_ge a b constructs an atom for representing-= b.

val atom_mk_gt : term -> term -> atom
atom_mk_gt a b constructs an atom for representing> b.

val atom_negate : atom -> atom
Constructs the negation of an atom.

Justifications
type Jjustification
A justificationis either
e atagUnijustifiedor
e a set of context atoms.

val justification_pp : Jjustification -> unit
Print a justification tastdout.

Processing
type context
A logical contextrepresents a conjunction of atoms.

val context_pp : context -> unit
Pretty-printing a context to standard output.

val context_ctxt_pp : context -> unit
Pretty-printing the logical context in a way that can be read in again by the parser.

val context_eq : context -> context -> bool

context_eq sl s2is a constant-time predicate for testing for identity of two states. Thus,
whenever this predicate holds, its corresponding contexts are logically equivalent.

val context_ctxt _of : context -> atom list
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context_ctxt_of s returns the logical context afas a set of atoms.

val context_mem : th -> context -> Term.t -> bool
context_mem th s xIiff x = _isin the solution set for theomh in s.

val context_apply :
th -> context -> Term.t -> Term.t * justification

apply th s xisawhenx = aisinthe solution set for theomh in s; otherwise
Not_found is raised.

val context_find :
th -> context -> Term.t -> Term.t * justification

find th s xisaif x = aisin the solution set for theomh in s; otherwise, the result is
just x.

val context_inv : th -> context -> Term.t -> Term.t

inv th s aisxifthereisx = ainthe solution set for theoryh; otherwiseNot_found is
raised.

val context_use : th -> context -> Term.t -> Term.Set.t

use th s x consists of the set of all term variablesuch that; = ain s, andx is a
variablea.

val context_empty : unit -> context
context_empty () represents the empty logical context.

type status

Inhabitants of type status are used as return valuestorprocess[4]. There are three
possible outcomes.

e Redundant implies the argumert in Ics.process[4]s a is valid in contexts.

e Inconsistent implies the argument conjoined withs in Ics.process[4]s ais
inconsistent.

e Consistent neither a redundancy nor an inconsistency could be detected.

val is_consistent : status —-> bool
val is_redundant : status -> bool
val is_inconsistent : status -> bool

val d_consistent : status -> context
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In caseis_consistent st holds,d_consistent st returns the extended context.

val process : context -> atom -> status

The operatiomprocess s a adds a new atora to a logical context. The codomain of this
function is of typestatus, elements of which represent the three possible outcomes of
processing an atom

e the atoma could be demonstrated to be inconsistert.iin this case,
Ics.is_inconsistent[4] holds of the result.

e the atoma could be demonstrated to be derivable in the cortekt this case,
Ics.is_redundant[4] holds.

¢ Neither of the above holds. In this case, a modified context for representing the context
of s conjoined witha is obtained using the destructots.d_consistent[4].

Notice that a resultes with Tcs.is_consistent[4] (res) does not necessarily imply that
atoma is indeed satisfiable, since the theory of ICS is indeed undecidable. Moreover, ICS
includes a number of nonconvex theories, which requires case-splitting for completeness.
process does not perform these case-splits in order to keep worst-case runtimes
polynomial (with the notable exception of canonization of logical bitwise operators).
Instead, it is in the responsibility of the application programmer to perform these splits; see
alsoIcs.split[4].

val split : context -> atom list
Suggested case splits.

val can : context -> term -> term * justification

Given a logical context and an atona, can s a computes a semicanonical formaoin s,
that is,

e if a holds ins it returnsAtom. True,
e if the negation ot holds ins then it returnsitom.False, and, otherwise,
e an equivalent normalized atom built up only from variables is returned.

val dom : context -> term -> dom * justification

Given a logical context and a terny, cnstrnt s a computes an arithmetic constraint for
a in s using constraint information is and abstraction interval interpretation. If no such
constraint can be deducethne is returned.

Propositional logic

type prop
Representation of propositional formulas with propositional variables and atoms as literals.
A propositional formual is either

e one of the propositional constants, ff
e a propositional variable,
e aliterall with 1 an atom (atoms are closed under negation),
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a conjunctiorpl & ... & pn,
a disjunctionol | ... | pn,
a negatiorp, or

aletbindinglet x := p in q.

val prop_pp : prop -> unit
Printing a propositional formula.

val prop_of_string : string -> prop
Parsing a string to obtain a propositional formula. The syntax of propositional formulas is

roughly given by the grammar above, and bracketare used for grouping. For details of
the grammar see filearser.mly.

val prop_to_string : prop -> string
Pretty-print a propositional variable to a string.

val prop_mk_true : unit -> prop
The trivially true propositional formula.

val prop_mk_false : unit -> prop
The trivially false propositional formula.

val prop_mk_var : name —> prop
Constructing a propositional variable.

val prop_mk_poslit : atom -> prop
Injecting an atom into a propositional formula.

val prop_mk_neglit : atom -> prop
Injecting a negated atom into a propositional formula.

val prop_mk_ite : prop -> prop -> prop -> prop
prop_mk_ite p g r constructs a propositional formula equivalenpt@p_mk_dis ]
(prop_mk_conj p q) (prop_mk_conij (prop_mk_neg p) r).

val prop_mk_conj : prop list -> prop
prop_mk_conj [pl;...;pn] constructs arepresentation of the conjunctioplofs
& pn with the empty list[] equivalent torop_mk_true ().

val prop_mk_disj : prop list -> prop
prop_mk_disj p g constructs a representation of the disjunctiop ahdg.
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val

val

val

val

val
val
val
val
val
val
val
val

val

val
val
val
val
val

val

type

val

val

prop_mk_iff : prop -> prop -> prop
prop_mk_iff p gconstructs a representation of the equivalencearidg.

prop_mk_neg : prop —> prop
prop_mk_neg p constructs a representation of the negatiop. of

prop_mk_let : name -> prop -> prop —> prop
prop_mk_let x p g constructs a structure-shared representation of the formula where
replaced by in q.

prop_is_true : prop -> bool
Exactly one of the following recognizers is true for a propositional formula.

prop_is_false : prop -> bool
prop_is_var : prop —> bool
prop_is_atom : prop -> bool
prop_is_ite : prop -> bool
prop_is_disj : prop -> bool
prop_is_iff : prop —-> bool
prop_is_neg : prop —> bool
prop_is_let : prop —> bool
prop_d_var : prop -> name

If the corresponding recognizer above holds, propositional formulas may be destructured
using the following.

prop_d_atom : prop -> atom
prop_d_ite : prop -> prop * prop * prop
prop_d_disj : prop —> prop list
prop_d_iff : prop -> prop * prop
prop_d_neg : prop -> prop
prop_d_let : prop -> name * prop * prop
assignment
Representation of assignments for propositional formulas.

assignment_pp : assignment -> unit
Pretty-printing assignments.

assignment_valuation : assignment -> (name * bool) list
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val

val

Assignments to propositional variables.

assignment_literals : assignment -> atom list
Assignment to nonpropositional literas.

prop_sat : context -> prop -> assignment option
prop_sat s p determines if the propositional formutas satisfiable in context. It
returns
e None, if p is unsatisfiable,

e Some (ms), if p is satisfiable; in this cases implicitly represents a set of candidate
models.

Imperative states

An imperative stateé state does not only include a logical context of typeate but also a
symbol table and input and output channels. A glakakte variable is manipulated and destruc-

tive

val

val
val
val
val

val

val

val

val

ly updated by commands.
init : int -> unit
Initialization. init n sets the verbose level to The higher the verbose level, the more
trace information is printed tetderr (see below). There are no trace messages fero0.
In addition, initialization makes the system to raise $he.Break exception upon user
interrupt~c~c. Theinit function should be called before using any other function in this
API.

set_outchannel : outchannel -> unit

set_inchannel : inchannel -> unit

set_prompt : string -> unit

set_eot : string -> unit

cmd_rep : unit -> unit

cmd_rep reads a command from the current input channel according to the grammar for the

nonterminakommandeof in moduleparser (see its specification in filearser.mly, the
current internal state accordingly, and outputs the result to the current output channel.

cmd_batch : inchannel -> int

Similar toIcs.cmd_rep[4], but syntax error messages contain line numbers, and
processing is aborted after state is unsatisfiable.

flush : unit -> unit
Flush currently active output channel.

Controls

reset : unit -> unit
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reset () clears all the global tables. This does not only include the current context but also
internal tables used for hash-consing and memoization purposes.

val gc : unit -> unit
gc () triggers a full major collection of ocaml’s garbage collector.

val sleep : int -> unit
Sleeping for a number of seconds.

Tracing

Rudimentary control on trace messages, which are sentterr. These functions are mainly
included for debugging purposes, and are usually not being used by the application programmer.

val trace_reset : unit -> unit
trace_reset () disables all tracing.

val trace_add : string -> unit

trace_add str enables tracing of functions associated with trace level For example,
trace_add "rule" traces the calls for processing all generated equalities, disequalities,
and constraints.

val trace_remove : string -> unit
trace_remove strremovesstr from the set of active trace levels

val trace_get : unit -> string list
trace_get () returns the set of active trace levels.

Lists
val is_nil : "a list -> bool
val cons : 'a —> 'a list -> 'a list
val head : 'a list -> 'a
val tail : ’'a list -> 'a list

Pairs
val pair : 'a > 'b -> 'a * 'b

pair a b builds a pair(a,b).

val fst : "a * 'b > 'a
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fst preturnsh if p is equal to someair a _

val snd : "a * 'b > 'b

snd p returnsb if p is equal to someair _ b.

Triples
val triple : 'a => 'b > 'c -> 'a * 'b * ¢
val fst_of_triple : 'a * 'b * 'c -> 'a
val snd_of_triple : 'a * 'b * 'c -> 'b
val third of_triple : 'a * 'b * 'c -> 'c
Quadruples
val fst_of_quadruple : "a * 'b * 'c * 'd -> 'a
val snd_of_quadruple : "a * 'b * 'c * 'd -> 'Db
val third of_quadruple : 'a * 'b * 'c * 'd -> 'c

val fourth_of_quadruple : "a * 'b * 'c * 'd -> 'd
Option types
An element of typ€ a option either satisfies the recognizes_some or is_none. In case,
is_some holds, a value of typea can be obtained byalue_of.
val is_some : 'a option -> bool
val is_none : 'a option -> bool

val value_of : ’"a option -> 'a

5 Calling ICS from Ocaml

The following Ocaml program tries to asserts the trivial atore= 4 to the empty context using
theprocess function in the interface and outputs the result to standard output.

open Ics
let main () =
let ¢ = context_empty () in
let a =
atom_mk_1le
(term_mk_num (num_of_int 5)) (term_mk_num (num_of int 4)) in

let s = process ¢ a in
begin if is_consistent s then

print_string "Consistent"
else if is_inconsistent s then
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print_string "Inconsistent"

else if is_redundant s then
print_string "Redundant"

else
failwith "Error"

end;

print_newline ();

Pervasives.flush Pervasives.stdout ;;

main () ;;
Given that this program is stored in fitest .m1, it is compiled with

$ ocamlopt -I <icspath>/1ib/i686-pc-linux-gnu/ -c test.ml
$ ocamlopt -I <icspath>/1ib/i686-pc-linux-gnu/ -o test unix.cmxa ics.cmxa test.cmx

So the only things needed are to give the Ocaml compiler the path to the librarpath>
and the linker the ICS library itself plusix.cmnxa as the Ocaml librarynix is used by ICS.
Notice that libraries for different platforms are distributed with ICS, and in the above we as-
sume thei 686-pc-1linux-gnu architecture. The architecture name can also be obtained using
config.guess.

Now, thetest program can be run to get the not too unexpected result.

S ./test
Inconsistent

6 Calling ICS from C/C++

The API for the C programming language is generated automatically from the Ocaml API de-
scribed above. The generated C file can be found in

./obj/SARCH/ics_stub.c

This file contains a C function declarations_xxx for each of the interface functiorxx described
above. For example, the definition of the functiors_mk_var for themk_var constructor is given
by the following C code.

value* ics_mk_var (char* x1) {
value* ics_mk_var (char* x1) {
value* r = malloc(sizeof (value));
register_global_root (r);
*r = 1;
*r = callback_exn(*ics_mk_var_rv,copy_string(xl));
if (!Is_exception_result (*r)) { return r; };
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ocaml_error ("ics_mk_var", format_caml_exception (Extract_exception(*r)));
return (value*) 0;

These interface function translate C arguments to Ocaml values, call the Ocaml function, and
translate back the results. In addition, any Ocaml exceptions are caught and handled by the
ocaml_error function. Curried signatures of the Ocaml functions are uncurried, and list and
tuple arguments must be build using the constructors of the interface. The handling of excep-
tions is determined by the functiastaml_error, which has to be provided by the application
programmer.

Calls to the C functions in the interface must obey the typing restrictions of Ocaml, otherwise
the result is undefined (typically, the program crashes). For example, the funetioterm_cmp
may only be called with two arguments representing term values, since the signature of this func-
tion in the interface is given asrm -> term -> int.

When usingc++ the following declarations are needed to use ICS. First, declare a function
ics_caml_startup before includingics.h.t

extern "C" {
void ics_caml_startup(int full, char** argv);
#include<ics.h>

}
Second, an application-dependent_error function such as the one below has to be provided.

extern "C" {

void ics_error(char * funname, char * message) {
cerr << "ICS error at " << funname << " : " << message << endl;
exit (1);
}
}

Third, before calling any ICS functionality, calts_caml_startup.

int main(int argc, char ** argv) ({
ics_caml_startup(l, argv);

}

A minimal c++ program for calling ICS can be found in Figutelf this program is stored in a file
hello-ics.cpp, then it can be compiled using

g++ hello-ics.cpp -lics
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#include<iostream.h>

extern "C" {

void ics_caml_startup(int full, char** argv);
#include<ics.h>

}

int main(int argc, char ** argv) {
ics_caml_startup(l, argv);
cout << "ICS: Hello World\n";

extern "C" {

void ics_error(char * funname, char * message) {
cerr << "ICS error at " << funname << " : " << message << endl;
exit (1);

I
Figure 1: Minimal setup for calling ICS.

Notice thatLD_LIBRARY_PATH variable should be such that the ICS libratyics.a can be found
in the linking stage.

AppendixA contains an implementation of a bounded model checker for the Bakery mutual
exclusion protocol irt++. Assuming that the name of the corresponding filesisery . cpp, then
this program can be compiled on a Linux platform using the static libranics.a with the
following command:

g++ -0 bakery -L S$ICSPATH/1lib/i686-pc-linux-gnu/ -I SICSPATH/obj/i686-pc-linux-gnu/ -11

Here,ICSPATH is assumed to be set to the the ICS home directory which contains ...

7 Calling ICS from Lisp

The Lisp API for ICS builds on the C interface and uses the foreign function interface of Allegro
Common Lisp 6.0. For each functiorxx in the API a foreign function declaratioics_xxx is
generated. In order to use ICS in Lisp, the shared objecti fite csall.so has to be loaded
followed by loading the foreign function interface.

> (load "./lib/i686-pc-linux-gnu/libicsall.so")
; Foreign loading 1lib/i686-pc-linux-gnu/libicsall.so.
t

lwithin theextern "c" directive, thec++ compiler does not rename functions.
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> (load "./include/ics.lisp")
t

Now, all the functions in the ICS interface are available in Lisp. It is the Lisp programmer’s
responsibility to call the ICS functions in a type-correct way. Calls to ICS functions violating the
Ocaml type discipline may have fatal consequences for the Lisp image. The ICS data structures
can be garbage collection using the Lisp garbage collector using finalization on wrappers of ICS
pointers. In the following, the Allegro Lisp functiotkcl:schedule-finalization directs the

Lisp garbage collector to callrap-free! when garbage collecting the wrapper, and the function
wrap-free! calls the ICS deregistration function on the unwrapped ICS structure.

(defstruct (wrap

(:predicate wrap?)

(:constructor make-wrap (address))

(:print-function

(lambda (p s k)

(declare (ignore k))
(format t "<#wrap: ~a>" (wrap-address p)))))
address)

(defun wrap-finalize! (w)
(excl:schedule-finalization w 'wrap-free!))

(defun wrap-free! (w)
(ics_deregister (unwrap w)))

In this way it is ensured that the Lisp and the Ocaml garbage collector cooperate as long as every
ICS wrapper has been finalized. A typical construction is demonstrated below.

(defun ics-empty-state ()
(let ((empty (make-wrap (ics_context_empty))))
(wrap-finalize! empty)
empty) )

The empty ICS context is obtained usings_context_empty, and the corresponding Lisp wrap-
perempty is finalized before being returned by this function.

ICS errors and exceptions are being handled through the Lisp exception mechanism, and ICS
functions are interruptable usingr1-C Cctrl-C.

Acknowledgements.The algorithms and data structures underlying ICS have been developed
by N. Shankar and Harald Ruel3. The core ICS code is by Harald Ruel3 and Jean-Christophe Fil-
lidtre, and the Lisp interface has been developed by Sam Owre, Harald Ruel3, and Jean-Christophe
Filliatre. The GMP ocaml interface was originally written by David Monniaux, and adjusted for
use withocaml 3.00 by Jean-Christophe Fillidtre. Leonardo de Moura wrote the simulator in
AppendixA.
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A Bakery Mutual Exclusion Protocol

The following program realizes a symbolic simulator for a simplified Bakery mutual exclusion
protocol using the ICS interface to C.

/***

PURPOSE
NOTES

HISTORY
demoura - Aug 8, 2002: Created.

Comiling using static library:
g++ -o bakery -L ../lib/i686-pc-linux-gnu/ \
-1 ../obj/i686-pc-linux-gnu/ \
-lics bakery.cpp

Compiling using dynamic library:
g+t -o bakery -L ../lib/i686-pc-linux-gnu/ \

-I ../obj/i686-pc-linux-gnu/ \
—-licsall -lgmp bakery.cpp

***/

#include<stdio.h>

#include<stdlib.h>

#include<iostream.h>

extern "C" {
void ics_caml_startup(int full, char** argv);

#include<ics.h>

}

extern "C" {
void ics_deregister (value* r);

}

tdefine MAX_ARRAY_SIZE 1024
int CALLS_TO_ICS = 0;

value * yl_ge_0;
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value * y2_ge_0;
value * nyl_eq yl[MAX_ARRAY_SIZE];

value * ny2_eq y2[MAX_ARRAY SIZE];

value * nyl_eq y2_plus_1[MAX ARRAY SIZE];
value * ny2_eq yl_plus_1[MAX ARRAY_SIZE];
value * yl_eq O[MAX_ARRAY_SIZE];

value * y2_eq 0[MAX_ARRAY_SIZE];

value * yl_1t_y2[MAX_ARRAY SIZE];
value * y2_lt_yl[MAX_ARRAY SIZE];

t#define BUFFER_SIZE 8192

void init_arrays (int max_depth)

{
static char buffer[BUFFER_SIZE];
v1l_ge_0 ics_atom_of_string("y1l0 >= 0");
y2_ge_0 ics_atom_of_string("y20 >= 0");

for(int 1 = 0; i <= max_depth; i++) {
sprintf (buffer, "yl1%d = yl%d", i+1l, i);
nyl_eq yl[i] = ics_atom_of_string(buffer);

sprintf (buffer, "y2%d = y2%d", i+l, 1i);
ny2_eq y2[i] = ics_atom_of_string(buffer);

sprintf (buffer, "yl%d = y2%d + 1", i+1, 1i);

nyl_eq y2_plus_1[i] = ics_atom_of_string(buffer);

sprintf (buffer, "y2%d = yl1%d + 1", i+1, 1i);

ny2_eq yl_plus_1[i] = ics_atom_of_string(buffer);

sprintf (buffer, "yl%d = 0", 1i);
yl_eq O[i] = ics_atom_of_string(buffer);

sprintf (buffer, "y2%d = 0", 1i);
y2_eq 0[i] = ics_atom_of_string(buffer);

sprintf (buffer, "yl%d < y2%d", i,1);
yl_1t_y2[i] = ics_atom_of_string(buffer);

sprintf (buffer, "y2%d < yl%d", 1i,1i);
y2_1t_yl1[i] = ics_atom_of_string(buffer);

49



bool process(value * state, value ** next, bool d_prev, value * atom) {
CALLS_TO_ICS++;
value * status = ics_process(state, atom);
bool result;

if (ics_is_consistent (status)) {
*next = ics_d_consistent (status);
result = true;

}

else if (ics_is_redundant (status)) {
*next = state;
result = true;

}

else 1f (ics_is_inconsistent (status)) {
result = false;

}

if (d_prev) {
ics_deregister (state);
free(state);

}

ics_deregister(status);

free(status);

return result;

int MAX_DEPTH = 0;
bool printed = false;

#define ERROR() {
if (!printed) {
ics_context_pp(state);
printed = true;
}
cout << endl;
cout << "pcl = " << pcl << ", pcZ2 = " <K< pc2 << ", at depth = " << depth << endl;

return 0;

int bakery_step(int pcl, int pc2, int depth, value * state)

{
if (depth >= MAX_DEPTH)
return 1;
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if (pcl == 3 && pc2 == 3) {

cout << "Error detected.... pcl ="
<< pcl
<< ", pcz ="
<< pc2
<< " at depth ="
<< depth
<< endl;

return 0;

value * new_state;

switch (pcl) {

case 1:
if (!process(state, &new_state, 0, nyl_eq_y2_plus_1[depth]))
break;
if (!process(new_state, &new_state, 1, ny2_eq y2[depth]))
break;
if (!bakery_step(2, pc2, depth+l, new_state)) {
ERROR () ;
}
break;
case 2:

if (!process(state, &new_state, 0, nyl_eq_yl[depth]))

break;

if (!process(new_state, &new_state, 1, ny2_eq y2[depth]))

break;

value * saved_state = new_state;
if (process(saved_state, &new_state,
'bakery_step (3, pc2, depth+l, new_state))
ERROR() ;
}
if (process(saved_state, &new_state,
'bakery_step (3, pc2, depth+l, new_state))
ERROR () ;
}
ics_deregister (saved_state);
free(saved_state);
}
break;
case 3:
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if (!process(state, é&new_state, 0, yl_eq_O[depth+l]))

break;

if (!'process(new_state, &new_state, 1, ny2_eq y2[depth]))
break;

if (!bakery_step(l, pc2, depth+l, new_state)) {
ERROR () ;

}

break;

switch (pc2) {

case 1:
if (!process(state, &new_state, 0, ny2_eq_yl_plus_1[depth]))
break;
if (!process(new_state, &new_state, 1, nyl_eq_yl[depth]))
break;
if (!bakery_step(pcl, 2, depth+l, new_state)) {
ERROR () ;
}
break;
case 2:
if (!process(state, &new_state, 0, nyl_eq_yl[depth]))
break;
if (!process(new_state, &new_state, 1, ny2_eq y2[depth]))
break;

value * saved_state = new_state;
if (process(saved_state, é&new_state, 0, yl_eq_0[depth]) &&
'bakery_step(pcl, 3, depth+l, new_state)) {
ERROR() ;
}
if (process(saved_state, é&new_state, 0, y2_lt_yl[depth]) &&
'bakery_step(pcl, 3, depth+l, new_state)) {
ERROR() ;
}
ics_deregister (saved_state);
free(saved_state);
}
break;
case 3:
if (!process(state, &new_state, 0, y2_eq 0[depth+l]))
break;
if (!process(new_state, &new_state, 1, nyl_eq yl[depth]))
break;
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if (!bakery_step(pcl, 1, depth+l, new_state))
ERROR () ;
}

break;

// ics_deregister (state);
// free(state);

return 1;

int main(int argc, char ** argv)

{

ics_caml_startup(l, argv);

cout << "depth = " << argv[l] << endl;
int depth = atoi(argv[l]);

cout << "ICS Started...\n";
init_arrays (depth);

cout << "Atoms initialized...\n";

value * ini_state = ics_context_empty();
process (ini_state, &ini_state, 0, yl_ge_0);
process (ini_state, &ini_state, 0, y2_ge_0);

MAX_DEPTH = depth;

if (!bakery_step(l, 1, 0, ini_state))

cout << "ERROR...." << endl;
cout << "calls to ICS = " << CALLS_TO_ICS << endl;
return 0;

}
extern "C" {

void ics_error(char * funname, char * message) {
cerr << "ICS error at "

<< funname

<< v o

<< message

<< endl;
exit (1);
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