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1 Introduction

ICS (Integrated Canonizer and Solver) is a decision procedure developed at SRI International.
It efficiently decides formulas in a useful combination of theories, and it provides an API that
makes it suitable for use in applications with highly dynamic environments such as proof
search or symbolic simulation.
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The theory decided by ICS is a quantifier-free, first-order theory of equality with terms
built from the combination of

U uninterpreted functions,
LA linear arithmetic (real and integer),
NL power products (nonlinear arithmetic),
P products,
COP coproducts (direct sums),
ARR functional arrays,
BV fixed-sized bitvectors,
PSET propositional sets, and
APP functional abstraction and application.

This combination is particularly interesting for many applications in the realm of software
and hardware verification, since the combinations of a multitude of datatypes occur naturally
in system specifications and the use of uninterpreted function symbols has proven to be
essential for many real-world verifications.

The core of ICS is a congruence closure procedure for the theory of equality and disequal-
ity with both uninterpreted and interpreted function symbols. The concepts of canonization
and solving have been extended to include inequalities over linear arithmetic terms. ICS is
capable of deciding sequents such as

• x+2 = y |- f(a[x:=3][y-2]) = f(y-x+1)

• f(y-1)-1 = y+1, f(x)+1 = x-1, x+1 = y |- false

• f(f(x)-f(y)) <> f(z), y <= x, y >= x+z, z > 0 |- false

These formulas contain uninterpreted function symbols such as f and interpreted symbols
drawn from the theories of arithmetic and the functional arrays. The list of interpreted
theories above is open-ended in the sense that new theories can be added to ICS as long
as they are canonizable and algebraically solvable. The modular design of ICS—both the
underlying algorithms and their implementation—supports such extensions.

One of the main problems in employing decision procedures effectively is due to the fact
that verification conditions usually depend on large contexts. In addition, these contexts
change frequently in applications such as symbolic simulation or backtracking proof search.
Consequently, decision procedure systems that are effective in these domains must not only
be able to build up contexts incrementally but they must also support efficiently switching
between a multitude of contexts. ICS meets these criteria in that all of its main algorithm
work incrementally and the data structures for representing contexts are persistent, that is,
operations on data structures do not alter the previous values of data and undo operations
are therefore for free.

ICS is implemented in Ocaml which offers satisfactory run-time performance, efficient
garbage collection, and interfaces well with other languages such as C.

There is a well-defined API for manipulating ICS terms, asserting formulas to the current
database, switching between databases, and functions for canonizing terms. This API is
packaged as a
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• a C library,

• an Ocaml library, and

• a CommonLisp interface.

The C library API, for example, has been used to connect ICS with PVS, and both an
interaction and a batch processing capability have been built using this API.

The efficiency and scalability of ICS in processing formulas, the richness of its API, and
its ability for fast context-switching make it possible to use it as a black box for discharging
verification conditions not only in a theorem proving context but also in a multitude of
applications like static analysis, abstract interpretation, extended type checking, symbolic
simulation, model checking, or compiler optimization.

1.1 Availability

For academic, non-commercial use ICS2.0 is available free of charge under a license agreement

http://ics.csl.sri.com/fm-license.pdf

with SRI. ICS is also an integral part of PVS 310. The complete sources and documentation
of ICS are available at

ics.csl.sri.com

Binaries for many popular hardware architectures and operating systems including Linux,
Mac OSX, Solaris, and Windows XP can also be found there.

1.2 Organization

This document describes the interfaces and implementation aspects of the ICS decision
procedures.

2 Installation

Before trying to compile ICS on your prefered hardware architecture and operating system
one might try one of the ICS binaries provided in the download section at ics.csl.sri.com.
Compilations should only be necessary for developers or if ICS is used on a “nonstandard”
platform.

Distribution. The file ics2.0.tar.gz can be downlowded from ics.csl.sri.com. Un-
pack this file using

> tar zxvf ics2.0.tar.gz
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This creates a directory ./ics with the following files and subdirectories.
Makefile.in : Template for generating Makefile.
fm-license.pdf : Noncommercial license.
bin/ : Binaries
configure : Configuration script
lib/ : Archives and shared object files
README : Short installation guide
doc/ : Documentation files
obj/ : Object files
sat/ : Sources for propositional SAT solver (in C++)
src/ : Source files for core ICS (in Ocaml and C)
ics : Shell script for invoking ICS interactor

Installation Requirements. ICS is written mainly in Ocaml, and it uses uses arbitrary
precision rational numbers from the GNU multi-precision library (GMP). To compile ICS
one needs to install:

• Ocaml version 3.06 or later. Freely available at http://caml.inria.fr.

• GNU MP version 4.1 or later. This package is freely available at http://www.swox.

com/gmp/.

Installation.

1. The configuration script generates a Makefile from the Makefile.in.

> ./configure [--with-gmp=/path/to/gmp] [--prefix=/path/to/installation]

The prefix option specifies the path for installing ICS binaries (prefix defaults to
/usr/local/bin. The optional with-gmp option is used to specify the path to a
particular GMP library. Configure tries to find an appropriate gmp package, but this
automatic search is somewhat unreliable and might fail on some computer systems. In
this case, you have to locate an appropriate gmp and run configure with the with-gmp

option.

2. Now, make compiles ICS on your machine.

> ./make

Binaries are placed in ./bin/$(ARCH)/ and the libraries in ./lib/$(ARCH)/, where
ARCH is the architecture guessed by the configuration script.

C compilers on some operating systems such as gcc on OS X are not able to build
dynamic libraries using the -shared option. In these cases it is necessary to edit the
generated Makefile and disable the creation of libics.so manually.
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3. The build directory is ./obj/$(ARCH)/, and the generated binary and byte code are
put in ./bin/$(ARCH)/. The binaries are installed at the location specified by the
prefix option to configure above using the following command.

> make install

3 The ICS interactor

The interactor permits processing formulas interactively and to explore the database. We
give an overview of the capabilities of ICS using various little examples.

The interactor is started with ./ics in the ICS home directory.

> ics

ICS 2.0 (Experimental, August 10 2003): Integrated Canonizer and Solver.

Copyright (c) 2003 SRI International.

Type ’help help.’ for help about help, and ’Ctrl-d’ to exit.

ics>

The ‘ics>’ is the prompt and ICS is ready to interpret your commands. All commands are
terminated by a ’.’. Help about available commands and the syntax of input is obtained
using the help command.

help - Display all commands
help <term> - Display definition of nonterminal <term>
help assert - Display description of command assert

3.1 ICS in action

ICS can either be used in batch, interactive, or in server mode. Here we demonstrate some
of the capabilities of ICS using its interactive mode. ICS maintains a state which can be
manipulated and queried by a series of command. Most importantly, the assert command
extends the current logical state with a new fact. The following command, for example, adds
an equality over terms built from the the variable x and the uninterpreted function symbol
f.

ics> assert f(f(f(x))) = f(x).

:ok s1

It adds this fact to the current logical, which can be queried using the ctxt command.

ics> ctxt.

:val {f(f(f(x))) = f(x)}
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In addition, the assert command generates a fresh name, here s1, for the extended state
and keeps this association in a symbol table.

ics> symtab.

:val empty |-> state({})

s1 |-> state({f(f(f(x))) = f(x)})

Now, asserting the equality f(f(f(x))) = f(x) to the current logical state yields :valid,
since indeed this equality logically follows from the previously asserted equality using con-
gruence closure.

ics> assert f(f(f(f(f(x))))) = f(x).

:valid {f(x) = f(f(f(x)))}

In this case, the current state is unchanged. ICS also returns a subset of the asserted
equalities, the so-called justification, from which the validity of the asserted atom follows.
Such a justification is not necessarily minimal. The generation of dependencies can be
disabled by using the -dependencies flag when calling the ICS interactor.

Validity of equalities is established in ICS using canonization. For example, canoniz-
ing the left-hand and the right-hand side of the equality above both yields the (internally
generated) variable v!1.

ics> can f(x).

:term v!1

:justification {}

ics> can f(f(f(f(f(x))))).

:term v!1

:justification {f(x) = f(f(f(x)))}

The second result of can is a justification for the equality between the argument and the
resulting term. Since the canonical forms of these terms are identical in the current context,
the equality f(f(f(x))) = f(x) holds indeed. Simplification of atoms is performed using
the simplify command.

ics> simplify f(x) = f(f(f(f(f(x))))).

:atom tt

:justification {f(x) = f(f(f(x)))}

Processing of new facts using assert is done by building up an internal representa-
tion, which can be queried using the show command. The current state after processing
f(f(f(x))) = f(x), for example, is obtained by introducing names for all subterms in this
equality.
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ics> show.

:state

v: [v!1 |-> {v!3}]

u: {v!1 = f(x), v!2 = f(v!1), v!3 = f(v!2)}

Thus, f(f(f(x))) equals f(f(v!1)), f(v!2), v!3, and, finally, v!1. The v part of the state
above represents the variable equality v!1 = v!3 with v!1 the canonical representative of
the generated equivalence class, whereas the u part consists of equalites x = f(...) with x

a variable, and f(...) a flat term with only variables as arguments. Notice that ICS does
not keep the left-hand side of equations in u in canonical form. Also, equations in the u part
are not necessarily in solved form, that is, an equation of the form x = f(x) may be added.

ICS supports also a number of interpreted theories in the combination with uninterpreted
function symbols. Let’s first reset the current context to the empty context.

ics> reset.

:unit

ics> assert z = f(x - y).

:ok s1

Here, x - y is interpreted as the difference between x and y in the theory of linear arithmetic.
Besides the variable equalities v and the set u of uninterpreted equalities, the resulting logical
state also contains a set a of linear arithmetic equalities.

ics> show.

:state

v:[z |-> {v!2}]

u: {v!2 = f(v!1)}

la: {v!1 = -1 * y + x}

Since the term f(x - y) in the input equality contains both the uninterpreted function
symbol f and the interpreted function symbol -, it is rewritten as f(v!1) with v!1 = -y

+ x, with v!1 a fresh variable. In contrast to equalities in u, equality sets for interpreted
theories are always in solved form, that is, a variable on the left-hand side does not occur on
any right-hand side. Now, x = z + y is asserted to state s1 by solving it for the largest—in
some given ordering—variable y, and deducing that v!1 is equal to z. Now, v!1 is replaced
with z in right-hand sides of u, and, since the non-canonical v!1 does not occur in any of the
equality sets anymore, the variable equality between v!1 and z can safely been forgotten.

ics> assert x = z + y.

:ok s2

ics> show.

:state

v:[z |-> {v!2}] with: [z |-> real]
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u: {v!2 = f(z)}

la: {y = x + -1 * z}

Asserting the disequality -y <> -(x - f(f(z)) yields unsatisfiability.

ics> assert -y <> -(x - f(f(z))).

:unsat {-1 * x + f(f(z)) <> -1 * y, x = y + z, z = f(-1 * y + x)}

That is, the conjunction of the facts in the current context with this disequality has been
shown to be unsatisfiable. The current state is unchanged in this case. This inconsistency is
detected by canonization, since the canonical forms of -y and -(x - f(f(z))) are identical
in context s2.

ics> can -y.

:term -1 * x + z

:justification {x = y + z}

ics> can -(x - f(f(z))).

:term -1 * x + z

:justification {x = y + z, z = f(-1 * y + x)}

Besides arithmetic, ICS includes other theories such as the theory of products, functional
arrays, coproducts, or bitvectors, and the combination of the theory of tuples and coproducts
is used to describe abstract datatypes such as binary trees. The following shows an example
for the combination of linear arithmetic, the theory arrays with function update a[i:=x]

and lookup a[i], and uninterpreted functions.

ics> reset.

:unit

ics> assert x+2=y.

:ok s1

ics> assert f(a[x:=3][y - 2]) = f(y - x +1).

:valid {y = 2 + x}

The next example demonstrates the combination of linear arithmetic with S-expressions
built from the pairing function cons(.,.) and the first and second projection car(.) and
cdr(.), and uninterpreted functions.

ics> reset.

:unit

ics> assert 2 * car(x) - 3 * cdr(x) = f(cdr(x)).

:ok s1

ics> assert f(cons(4 * car(x) - 2 * f(cdr(x)), y)) = f(cons(6 * cdr(x), y)).

:valid {-3 * cdr(x) + 2 * car(x) = f(cdr(x))}
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Again, variables are introduced for abstracting terms and the state s1 also contains an
equality sets for the theory of products p.

ics> show.

:state

u: {v!3 = f(v!1)}

la: {v!3 = 2 * v!2 + -3 * v!1}

p: {v!1 = cdr(x),

v!2 = car(x)}

So far, we have only dealt with equalities and disequalities, but constraints over inequal-
ities with arithmetical operations appear in almost all verification conditions from simple
sequential programs over reactive, real-time, and hybrid systems. It is crucial to tightly
integrate equality and inequality reasoning in that equalities are propagated to all known
inequalities, and the inequality reasoner generates all possible equalities. In ICS, we achieve
such an efficient integration using slack variables to reduce problems about inequalities to
equality reasoning and simple constraint propagation. For example, the equality x <= y +

2 is reduced to the equality x - y - 2 = k!1 with k!1 a newly generated, non-negative
slack variable. This equality is solved for the largest variable y and asserted to the equality
set a.

ics> reset.

:unit

ics> assert x <= y + 2.

:ok s1

ics> show.

:state

la: {y = -2 + x + k!1}

Now, the inequality y <= z + 4 is rewritten as the nonnegativity constraint 6 + z + -1 *

x + -1 * k!1 >= 0 and a new slack variable k!2 is introduced to express this constraint in
terms of an equality, which is solved for the largest variable z.

ics> assert y <= z + 4.

:ok s2

ics> show.

:state la: {y = -2 + x + k!1, z = -6 + x + k!2 + k!1}

The inequality z + 6 <= x is reduced to the nonnegativity constraint 6 + z + -1 * x >=

0, and 6 + z + -1 * x = k!3, with k!3 and the equality is solved and merged into state
s2 to obtain s3.

ics> assert z + 6 <= x.

:ok s3
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ics> show.

:state

la: {y = -2 + x + k!1, z = -6 + x + -1 * k!2}

In effect, the implied equalities x = y + 2 and x = z + 6 are respected by the canonizer.

ics> can x.

:val x

:justification {}

ics> can y + 2.

:val x

:justification {2 + y + -1 * x >= 0, 4 + z + -1 * y >= 0, -6 + -1 * z + x >= 0}

ics> can z + 6.

:val x

:justification {2 + y + -1 * x >= 0, 4 + z + -1 * y >= 0, -6 + -1 * z + x >= 0}

One distinguishing feature of ICS is its management of dynamics contexts. In the example
above, all intermediate states are maintained in a symbol table.

ics> symtab.

:symtab [

empty |-> [];

s1 |-> [2 + y + -1 * x >= 0];

s2 |-> [4 + z + -1 * y >= 0; 2 + y + -1 * x >= 0];

s3 |-> [-6 + -1 * z + x >= 0; 4 + z + -1 * y >= 0; 2 + y + -1 * x >= 0]

]

Most commands can access a state directly through its name in the symbol table. For
example, the logical context of the second state is obtained using the command ctxt@s2.

ics> ctxt@s2.

:val {-4 + -1 * z + y<=0, -2 + -1 * y + x<=0}

Names are also used for asserting facts to specific contexts. The following command, for
example, extends the state s3 with the disequality x <> 2.

ics> assert@s3 x <> 2.

:ok s4

Now, s4 is the current state, but s3 can be restored to be the current state using
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ics> restore s2.

Thus, the ICS interface includes the management of dynamic contexts, which is important
for using it as a verification backend in symbolic simulation or proof search.

Dynamic contexts are also used in extending the core ICS as described above with a SAT
solver for deciding the satisfiability of Boolean combinations of equalities and inequalities.
Such a decision procedure is available as the command sat. Obviously, the following Boolean
formula is unsatisfiable (| denotes disjunction, & is conjunction, and brackets [, ] are used
for grouping.

ics> sat [x = 1 | x = 4] & x > 5.

:unsat

In case such a propositional formula is satisfiable, a conjunction of atoms is returned for
implicitly describing a set of satisfying assignments.

ics> sat [x = 1 | x = 2 | x = 3] & x > 1.

:sat s5

:model [-1 + x > 0; x = 3]

Here, all assignments to x satisfying both -1 + x > 0 and x = 3, describe models for the
input formula. Here, there is obviously only one possible assignent, and the description is
not minimal. In addition, a new context, of name s5, is created for these set of assignments.
Using only propositional variables, the sat command reduces to a Boolean satisfiability
solver.

ics> sat p & [~p | r].

:sat s6

:model [r |-> true; p |-> true]

3.2 The Command Language

The ICS command language realizes a ask/tell interface to a context consisting of known
facts. Each command is followed by a ’.’.

Asserting facts.

assert [@<ident>] <atom>,...,<atom>

An assert atm adds the atom atm to the current context. There are three possible outcomes:

1. atom is inconsistent with respect to the current context. In this case, assert leaves the
current context unchanged and outputs :unsat on the standard output. In addition,
a justification in terms of an inconsistent subset of the current context is output if the
generation of justifications is enabled.
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2. atom is valid in the current context. Again, the the current context is left, and now
:valid is output.

3. Otherwise, in case atom has neither been shown to be valid nor inconsistent in the
current context, the current context is modified to include new information obtained
from atom. In addition, a new name is generated for this context and a symbol table
entry is added for this name. The result is of the form :ok si.

Notice that the result :ok does not necessarily mean that the database is indeed consistent,
since the language accepted by ICS is undecidable. As long as one restricts oneself to a
decidable fragment (such as the union of convex Shostak theories) of the ICS input language,
:ok can be interpreted to mean satisfiable. For nonconvex theories such as functional arrays
and linear integer arithmetic, the split command can be used for case splitting. In contrast,
a result :valid indicates that the current atom is indeed valid in the current context, and
:unsat indicates that the current context conjoined with the currently asserted atom is
indeed unsatisfiable.

assert@s atm works as explained above but the atom is asserted to the context s in the
current symbol table, and assert@s atm1,...,atm asserts the conjunction of atoms atm1

to context s.
Examples: Asserting the equalities f(v) = v and f(u) = u - 1 yields new contexts of name
s1 and s2. Only after asserting u = v is a contradiction detected.

ics> assert f(v) = v.

:ok s1

ics> assert f(u) = u - 1.

:ok s2

ics> assert u = v.

:unsat {v = f(v), u = v, -1 + u = f(u)}

Names of context such as s1 may also be used to address contexts in the symbol table as in
assert@s1 below.

ics> assert x = y.

:ok s1

ics> assert y = z.

:ok s2

ics> assert@s1 y = 2.

:ok s3

ics> symtab s3.

:state v:[x |-> {y}] la: {x = 2}

ics> ctxt.

:atoms [x = y; y = 2]

See Also: symtab3.2,
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Canonization.

can <term>

For a term t, can t returns a term, which is a canonical representative of the equivalence
class of t as induced by the atoms in the current context. If the generation of dependencies
is enabled, then also a justification of the equality between t and can t is returned. There
are no side effects.
See Also: simplify3.2

Simplification.

simplify <atom>

simplify a returns an atom equivalent to b in the current context. If proofmode is enabled,
then, in addition, a justification of this equivalence is returned. See Also: can3.2

Logical Context.

ctxt [@<ident>]

ctxt returns the set of atoms asserted in the current logical context, and ctxt@s returns the
set of asserted atoms in state ’s’ from the symbol table. These atoms are not necessarily in
canonical form.

Term Definition.

def <ident> := <term>

Extend the symbol table with a definition <ident> for term <term>. In such a context,
variable <ident> is always macro-expanded to <term>, but different occurrences of termare
structure-shared. Also, <ident> may occur in <term>, since the expansion is not performed
recursively.
Examples: def x := y + z

Disequalities.

diseq [@<ident>] <term>

Returns a list of variables known to be disequal to <term> in the context <ident> or the cur-
rent context if <ident> is not specified. In addition, in proof generation mode, justifications
for each disequality are returned

Exit.

exit

Exit the ICS interactor. Alternatively, Ctrl-D can be used.
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Clearing current logical context.

forget .

Resets the current logical context to the empty context. In contrast to reset, all other ICS
data structures are left unchanged.
Examples:

ics> assert x = y.

:ok s1

ics> ctxt.

:val {x = y}

ics> forget.

:unit

ics> ctxt.

:val {}

See Also: reset3.2, symtab3.2, forget3.2

Finds in solution sets.

find [@<ident>] <th> <term>

If the equality x = t is, in the current context, in the equality set for theory <th>, say a,
then find a x returns t and otherwise x. The addressing find@s1 a x may be used to
address the solution set for, say, the arithmetic theory in the context s1 in the symbol table.
See Also: inv3.2

Help.

help [<command> | < <nonterminal> >]

Help about ICS interactor commands and syntactic categories.
Examples.
help Display all commands
help help Display this message
help <term> Display definition of nonterminal <term>
help assert ”Display description of command assert

Inverse find in solution sets.

inv [@<ident>] <th> <term>

If the equality x = t is, in the current context, in the specified solution set for the specified
equality theory, say a, then inv a x returns t and otherwise None. The addressing inv@s1

a x may be used to address the solution set for, say, the arithmetic theory in the context s1
in the symbol table.
See Also: find3.2
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Definition of Propositions.

prop ¡ident¿ := ¡prop¿

Extend the symbol table with a definition var for the proposition proposition. In such a
context, variable var is always expanded to propositionbut different occurrences of proposi-
tionare structure-shared. see also command def. This command fails if there is already a
var in the symbol table.

Resetting.

reset

Reinitializes all internal data structures including setting the current logical context to the
empty context and the symbol table is emptied out.

Restoring logical contexts.

restore <ident>

Updating the current logical state to be the state named by ident in the symbol table.
See Also: symtab3.2

Removing symbol table entries

remove <ident>

Remove the symbol table entry corresponding to <ident>.
See Also: symtab3.2

Saving the current logical context.

save [<ident>]

Adding a symbol table entry var for the current logical state.
See Also: symtab3.2, forget3.2,

Satisfiability Solver.

sat [@<ident>] <prop>

A satisfiability solver for propositional formulas over atoms. Returns :unsat if the formulas
has been shown to be unsatisfiable or :sat together with an assignment to the Boolean
variables and the truth values of the atoms in a satisfying assignment. In addition, a name
is added in the symbol table for the state corresponding to the conjunction of the atoms in
a satisfying assignment, but the current logical state is unchanged.

Examples: Literals might be just Boolean variables and the satisfibility of the Boolean
probem (| is disjunction, & is conjunction, # is exclusive or, and ~ is negation) is tested as
follows.
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ics> sat x | y | [z & ~x] # y.

:sat(s1) [x |-> true]

Notice that brackets [ and ] as in [z & ~x] are used for structuring propositional formulas.
The values for the variables y and z are don’t cares and therefore not explicitly stated. In
addition to Boolean formulas, the command sat also handles Boolean formulas over atomic
constraints.

ics> sat x > y & [y = 2 # ~[x <> 3]].

:sat(s1) [-1 * y + x>0; y <> 2; x = 3]

Now, each possible assignment to x and y, which satisfy the given constraints, is a candidate
satisfying assignment of the input formula.

Signature Declaration.

sig <ident> : <sig>

Declare a variable <ident> to be interpreted over the set of bitvectors of width i or the
integers or the reals. For example, after declaring sig x : int, every occurrence of the
variable x is interpreted to mean the variable x{int}, that is the variable of name x with
associated interpretation domain int. Notice that ICS treats y and y{int} as different
variables. Bitvector variables have to be declared before use, when using infix operators,
since context information is used for inferring parameters when applying infix bitvector
operators.

Sigmatization.

sigma <term>

Computes the normal form of a term using theory-specific canonizers for terms in interpreted
theories and some builtin simplifications for uninterpreted terms. This command leaves the
current state unchanged.
See Also: can3.2, simplify3.2

Displaying the context.

show [@<ident>] [<th>]

Displays the current logical state which consists of a

Variable equalities. The v part represents a set of equalities over variables. For example

v:[a |-> {a, b}; x |-> {x, y, z}]
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says that a and b are equivalent and that x, y, and z are equivalent. The canonical
representatives each the two non-trivial equivalence classes are a and x.

Variable disequalities. The d part is just a conjunction of disequalities over variables

d:[y <> x; z <> y]

The set of variables known to be disequal can also be obtained using the diseq com-
mand.

Variable constraints are conjunctions are sign interpretations for internally generated
slack variables. This information is used, for example, by the sign command.

Theory-specific solution sets. A theory-specific solution set is a conjunction of equalities
x = t with x a variable and t a non-variable term with function symbols in only one
theory. Variables in terms might also be internally generated variables of the form x!i.
For all interpreted theories, the equations in a solved form are actually solved in that
variables x on a rhs do not occur in any of the lhs. The solution sets can be queried
with the find, inv, and the use command.

Slack equalities. Are equalities between internally generated slack variables. These equal-
ities can not be manipulated or queried with any other command.

See Also: ctxt3.2,

Solving.

solve <th> <term> = <term>

Theory-specific solver for input equality. Returns either a solved list of equalities with
variables on the lhs which is, in the given theory, equivalent to the input equality or :unsat
if the input equality is unsatisfiable. There are solvers for linear arithmetic (la), tuples (t),
bitvectors (bv), and propositional sets.

Examples. The first example demonstrates solving in the theory la of linear arithmetic.

ics> solve la x + 2 = y - 3.

:subst [y |-> 5 + x]

Solving in the theory p of pairs might introduce fresh variables such t!2 below.

ics> solve p car(x) = cons(u, v).

:subst [x |-> cons(cons(u, v), cdr(x))]

The following illustrates solving in the theory of bitvectors.
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ics> sig x2 : bitvector[2].

:unit

ics> sig x3 : bitvector[3].

:unit

ics> solve bv x2 ++ 0b10 = 0b10 ++ x2.

:val [x2 = 0b10]

ics> solve bv x3 ++ 0b10 = 0b10 ++ x3.

:unsat

Symbol Table.

symtab [<ident>]

symtab display the current symbol table, and symtab vardisplays the symbol table entry
associated with var. Such an entry might either be a logical context entry, a term definition,
a definition of a proposition, or a signature entry for domain restrictions of variables.
Examples:

ics> assert x = y.

:ok s1

ics> symtab.

:symtab

empty |-> []

s1 |-> [x = y]

ics> def x := y + z.

:unit

ics> prop z := a | b.

:unit

ics> symtab.

:symtab [

empty |-> [];

x |-> z + y;

s1 |-> [y = x];

z |-> a | b]

ics> sig x : bitvector[2].

:error Name x already in table

ics> sig b : bitvector[2].

:unit

ics> sig q : int.

:unit

ics> symtab.

18



:symtab[

empty |-> [];

x |-> z + y;

s1 |-> [y = x];

z |-> a | b; b |-> bitvector[2];

q |-> int]

Trace.

trace <levels>

Tracing facility is used mainly for debugging purposes. However, using trace rule might
sometimes be useful to analyze which facts are internally being asserted by ICS. Similarly,
trace levels such as v, d, la, can be used to trace updates on internal data structures.
See Also: untrace3.2,

Disable tracing.

untrace [<levels>]

Disable specified trace levels. If no trace levels are given, all tracing is disabled.
See Also: trace3.2,

Usually, the capabilites of ICS are not accessed through the interactor but rather through
its application programming interface. Currently, we support interfaces for C, Fortran,
Lisp, and Ocaml. We first describe the Ocaml interface, since the interfaces for the other
programming languages are automatically generated from this one.

4 Module Ics : Application programming interface.

The ICS API includes function for

• asserting formulas to a logical context,

• switching between different logical contexts, and

• manipulating and normalizing terms.

There are two sets of interface functions. The functional interface provides functions
for building up the main syntactic categories of ICS such as terms and atoms, and for
extending logical contexts using Ics.process[4], which is side-effect free.

In contrast to this functional interface, the command interface manipulates a global
state consisting, among others, of symbol tables and the current logical context. The
Ics.cmd rep[4] procedure, which reads commands from the current input channel and ma-
nipulates the global structures accordingly, is used to implement the ICS interactor.
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Besides functions for manipulating ICS datatypes, this interface also contains a number
of standard datatypes such as channels, multiprecision arithmetic, tuples, and lists.

val version : unit -> unit

Outputs this ICS’s version number on stdout.

Parameters

The following flags determine the current configuration of ICS.

val set_profile : bool -> unit

Enable profiling of used time and memory resources for selected functions. Used
mainly for debugging.

val set_pretty : string -> unit

Determine pretty-printing.

• mixfix enables pretty-printing in mixfix and infix form,

• prefix disables mixfix and infix printing, and

• sexpr enables printing in terms of S-expressions of the form (:op arg1 . . . argn).

val set_compactify : bool -> unit

set compactify false disables garbage collection of internally generated variables
(default true).

val set_assertion_frequency : int -> unit

set assertion frequency n determines how often (frequency) the SAT solver sends
(the relevant) information to ground decision procedures.

val set_verbose : bool -> unit

Using set verbose true, the SAT solver reports all kinds of statistics and progress
reports (default false).

val set_remove_subsumed_clauses : bool -> unit

Internal configuration of the SAT solver.

val set_validate : bool -> unit

With set validate set to true, the SAT solver validates all generated assignments
and all justifications for inconsistencies.

val set_polarity_optimization : bool -> unit

Internal configuration of the SAT solver.

val set_clause_relevance : int -> unit
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Internal configuration of the SAT solver.

val set_cleanup_period : int -> unit

Internal configuration of the SAT solver.

val set_num_refinements : int -> unit

Internal configuration of the SAT solver.

val set_statistic : bool -> unit

Enable/Disable SAT solver to print statistics (default false).

val set_show_explanations : bool -> unit

Display explanations generated for SAT solver on Format.err formatter when flag
is enabled.

val set_justifications : bool -> unit

Print justifications of internally xgenerated facts (default false).

val set_integer_solve : bool -> unit

Enable/disable integer solver (default true). Disabling the integer solver makes the
procedure incomplete, but (usually) faster.

val set_proofmode : string -> unit

ICS supports various proof modes.

• No disables generation of justifications

• Dep enables generation of dependencies (default).

• Yes enables generation of proof terms (disabled in ICS 2.0).

val set_gc_mode : string -> unit

Various settings for garbage collection

• Lazy delay garbage collection

• Eager garbage collection.

val set_gc_space_overhead : int -> unit

GC will work more if space overhead is smaller (default 80).

val set_gc_max_overhead : int -> unit

Controlling heap compaction (default 500), gc max overhead >= 1000000 disables
compaction.

Channels

type inchannel = Pervasives.in_channel
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inchannel is the type of input channels.

type outchannel = Format.formatter

Formattable output channel.

val channel_stdin : unit -> inchannel

channel stdin is the predefined standard input channel.

val channel_stdout : unit -> outchannel

channel stdout is the predefined standard output channel.

val channel_stderr : unit -> outchannel

channel stdout is the predefined standard error channel. All ICS trace messages are
put onto this channel.

val inchannel_of_string : string -> inchannel

inchannel of string str opens an input channel for reading from a string (file
name). This function raises Sys error in case such a channel can not be opened.

val outchannel_of_string : string -> outchannel

outchannel of string str opens an output channel for writing from a string (file
name). This function raises Sys error in case such a channel can not be opened.

Multi-precision arithmetic

type q

Type for representing the rational numbers.

val num_of_int : int -> q

num of int n constructs a rational from the integer n.

val num_of_ints : int -> int -> q

num of ints n m, for m <> 0, constructs a normalized representation of the rational
n/m in q.

val ints_of_num : q -> string * string
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ints of num q decomposes a rational with numerator n and denumerator m into
("n", "m").

val string_of_num : q -> string

string of num q constructs a string (usually for printout) of a rational number

val num_of_string : string -> q

num of string s constructs a rational, whenever s is of the form n/m where n and m

are integers.

Names

type name

Representation of strings with constant equality test.

val name_of_string : string -> name

name of string str constructs a name n from a string such that
Ics.name to string[4](n) yields str.

val name_to_string : name -> string

name to string n is the inverse operation of Ics.name of string[4].

val name_eq : name -> name -> bool

name eq n m holds iff the corresponding strings Ics.name to string[4](n) and
Ics.name to string[4](m) are equal. This equality test is constant in the length of
strings.

Arithmetic domains

type dom

Arithmetic domains

val dom_mk_int : unit -> dom

val dom_mk_real : unit -> dom

val dom_mk_nonint : unit -> dom

val dom_is_int : dom -> bool

val dom_is_real : dom -> bool

val dom_is_nonint : dom -> bool

Theories

type th
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A theory is associated with each function symbol of terms.

• u Theory of uninterpreted function symbols.

• la Linear arithmetic theory.

• p Product theory.

• bv Bitvector theory.

• cop Coproducts.

• nl Power products.

• app Theory of function abstraction and application.

• arr Array theory.

• pset Theory of propositional sets

val th_to_string : th -> string

th to string th returns the unique name associated to theory th.

val th_of_string : string -> th

th of string s returns theory th if to string th is s; otherwise the result is
unspecified.

Function symbols

type sym

Representation of function symbols. Function symbols are partitioned into

• uninterpreted function symbols (of theory u) and

• interpreted function symbols from the theories la, p, bv, cop, nl, cop, app, arr,
and pset above.

val sym_theory_of : sym -> th

sym theory of f returns the theory th associated with the function symbol f.

val sym_eq : sym -> sym -> bool

sym eq tests, in constant time, for equality of two function symbols.

val sym_cmp : sym -> sym -> int

sym cmp f g provides a total ordering on function symbols. If it returns

• a negative integer, then f is said to be smaller than g,

• 0, then f is equal to g and Ics.sym eq[4](f, g), and

• a positive numbe, then f is said to be larger than g.

val sym_is_uninterp : sym -> bool
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sym is uninterp f holds iff f is an uninterpreted function symbol.

val sym_d_uninterp : sym -> name

sym d uninterp f returns the name associated with an uninterpreted function
symbol f. This accessor is undefined if Ics.sym is uninterp[4](f) does not hold.

Linear arithmetic function symbols are either

• numerals for representing all rational numbers,

• the addition symbols,

• symbols for representing linear multiplication by a rational of type Ics.q[4].

val sym_mk_num : q -> sym

sym mk num q constructs a numeral symbol for representing q.

val sym_is_num : sym -> bool

sym is num f holds iff f represents a numeral.

val sym_d_num : sym -> q

sym d num f returns the rational q if f represents q. This accessor is undefined if
Ics.sym is num[4] does not hold.

val sym_mk_add : unit -> sym

sym mk add() constructs the addition symbol.

val sym_is_add : sym -> bool

sym is add f holds iff f represents the addition symbol.

val sym_mk_multq : q -> sym

sym mk multq q constructs the symbol for linear multiplication by a rational q.

val sym_is_multq : sym -> bool

sym is multq f holds iff f represents a linear multiplication symbol.

val sym_d_multq : sym -> q
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sym d multq f returns q if f represents linear multiplication by q. This accessor is
undefined if Ics.sym d multq[4] does not hold.

Symbols of the product theory p consist of

• consing

• and first and second projections car, cdr.

val sym_mk_cons : unit -> sym

sym mk cons() constructs the symbol for tupling.

val sym_is_cons : sym -> bool

sym is cons f holds iff f represents tupling.

val sym_is_car : sym -> bool

sym is car f holds iff f represents a projection.

val sym_mk_car : unit -> sym

sym mk car() constructs the symbol for the first projection

val sym_is_cdr : sym -> bool

sym is cdr f holds iff f represents a projection.

val sym_mk_cdr : unit -> sym

sym mk cdr() constructs the symbol for the first projection

Symbols of the theory of coproducts are eith

• left and right injections,

• left and right coinjections

val sym_mk_inl : unit -> sym

sym mk inl () constructs symbol for left injection.

val sym_is_inl : sym -> bool
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sym is inl f holds iff f represents left injection.

val sym_mk_inr : unit -> sym

sym mk inr () constructs symbol for right injection.

val sym_is_inr : sym -> bool

sym is inr f holds iff f represents right injection.

val sym_mk_outl : unit -> sym

sym mk outl () constructs symbol for left injection.

val sym_is_outl : sym -> bool

sym is outl f holds iff f represents left coinjection.

val sym_mk_outr : unit -> sym

sym mk outr () constructs symbol for right coinjection.

val sym_is_outr : sym -> bool

sym is outr f holds iff f represents right coinjection.

Symbols in the fixed-sized bitvector theory include

• constant bitvectors of length n >= 0,

• concatenation of a bitvector of width n >= 0 with a bitvector of width m >= 0,

• extraction of bits i through j of a bitvector of length n >= 0, (0 <= i <= j < n),
and

• bitwise conditionals for bitvectors of length n.

val sym_mk_bv_const : string -> sym

sym mk bv const str constructs, say, a bitvector constant 01001 from a string of the
form "01001". The result is undefined if characters other than ’0’ or ’1’ appear in
the string.

val sym_is_bv_const : sym -> bool
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sym is bv const f holds iff f represents a bitvector constant symbol.

val sym_mk_bv_conc : int -> int -> sym

sym mk bv conc n m constructs a concatenation symbol with indices n and m, for n,
m >= 0, for concatenating a bitvector of width n with a bitvector of length m.

val sym_is_bv_conc : sym -> bool

sym is bv conc f holds iff f represents a concatenation symbol.

val sym_d_bv_conc : sym -> int * int

sym d bv conc f returns (n, m) iff f represents a concatenation symbol for
bitvectors of width n with a bitvector of width m.

val sym_mk_bv_sub : int -> int -> int -> sym

sym mk bv sub i j n constructs a bitvector extraction symbol for the indices 0 <= i

<= j < n.

val sym_is_bv_sub : sym -> bool

sym is bv sub f holds iff f represents a bitvector extraction symbol.

val sym_d_bv_sub : sym -> int * int * int

sym d bv sub f returns (i, j, n) iff f represents a bitvector extraction of bits i
through j of a bitvector of width n.

Symbols from the theory of power products include

• Multi-ary nonlinear multiplication symbol

• Exponentiation with an integer.

val sym_mk_mult : unit -> sym

sym mk mult() constructs the nonlinear multiplication symbol.

val sym_is_mult : sym -> bool

sym is mult f holds iff f represents the nonlinear multiplication symbol.

Symbols from the theory of function abstraction and application include

28



• function abstraction

• function application

A function application symbol may have a constraint of type Ics.cnstrnt associated
with it.

val sym_mk_apply : unit -> sym

sym mk apply co constructs a symbol for function application with associated
constraint co.

val sym_is_apply : sym -> bool

sym is apply f holds iff f represents the function application symbol.

val sym_mk_s : unit -> sym

sym mk s() constructs the symbol for the S combinator.

val sym_is_s : sym -> bool

sym is s f holds iff f represents the S combinator.

val sym_mk_k : unit -> sym

sym mk s() constructs the symbol for the K combinator.

val sym_is_k : sym -> bool

sym is k f holds iff f represents the K combinator.

val sym_mk_i : unit -> sym

sym mk i() constructs the symbol for the I combinator.

val sym_is_i : sym -> bool

sym is i f holds iff f represents the I combinator.

Symbols from the theory of arrays include

• array updates (write)

• array selection (read)

val sym_mk_select : unit -> sym
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The array select symbol.

val sym_is_select : sym -> bool

sym is select f holds iff f represents the array selection symbol.

val sym_mk_update : unit -> sym

The array update symbol.

val sym_is_update : sym -> bool

sym is update f holds iff f represents the array update symbol.

Symbols from the theory of propositional sets include

• empty set

• full set

• conditional set.

val sym_mk_empty : unit -> sym

The empty set symbol

val sym_is_empty : sym -> bool

sym is empty f holds iff f represents the empty set symbol.

val sym_mk_full : unit -> sym

The full set symbol

val sym_is_full : sym -> bool

sym is full f holds iff f represents the full set symbol.

val sym_mk_ite : unit -> sym

The conditional set symbol

val sym_is_ite : sym -> bool

sym is ite f holds iff f represents the conditional set constructor.

Terms

Terms are either

• variables or
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• applications of function symbols of type Ics.sym[4] to a list of terms.

type term

val term_of_string : string -> term

term of string parses a string according to the grammar for the nonterminal
Parser.termeof (see its specification in file parser.mly) and builds a corresponding
term.

val term_input : inchannel -> term

term input inch is similar to Ics.term of string[4] but builds a term by reading
from input channel inch.

val term_output : outchannel -> term -> unit

term output outch a prints term a on the output channel out.

val term_to_string : term -> string

term to string a prints a term to a string. This string is parsable by
Ics.term of string[4].

val term_pp : term -> unit

term pp a is equivalent to term output (Ics.stdout()) a.

val term_eq : term -> term -> bool

term eq a b holds iff a and b are syntactically equal, that is, either

• both a and b are variables of the same kind and their associated names are equal

• both a and b are application terms with equal function symbols (see
Ics.sym eq[4]), the number of arguments in a and b is equal, and the respective
arguments at every position are term equal.

val term_cmp : term -> term -> int

Comparison term cmp a b returns either -1, 0, or 1 depending on whether a is less
than b, the arguments are equal, or a is greater than b.

• Variables are always greater than applications,

• variables are ordered according to Ics.var cmp, and

• applications are ordered lexicographically using Ics.sym cmp[4] on the function
symbols and comparing respective term arguments.

val term_mk_var : string -> term
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Given a string s, term mk var s constructs an external variable with name s.

val term_mk_dom_var : string -> dom -> term

Given a string s and a domain, term mk var s dom constructs an external variable
with name s and domain restriction dom.

val term_mk_uninterp : string -> term list -> term

term mk uninterp s al constructs an application of an uninterpreted function
symbol s to a list al of argument terms.

Linear arithmetic terms are built-up from rational constants, linear multiplication of
a rational with a variable, and n-ary addition.

Linear arithmetic terms are always normalized as a sum-of-product q0 + q1*x1+...+qn*xn

where the qi are rational constants and the xi are variables (or any other term not inter-
preted in this theory), which are ordered such that Ics.term cmp[4]xi xj is greater than
zero for i < j. This implies that any such variable occurs at most once. In addition, qi, for
i > 0, is never zero. If qi is one, we just write xi instead of qi * xi, and if q0 is zero, it
is simply omitted in the sum-of-product above.

Terms in this theory include rational constants built from term mk num q, linear mul-
tiplication term mk multq q a, addition term mk add a b of two terms, n-ary addition
term mk addl al of a list of terms al, subtraction term mk sub a b of term b from term
a, negation term mk unary minus a, multiplication term mk mult a b, and exponentiation
term mk expt n a. These constructors build up arithmetic terms in a canonical form as
defined in module Arith. term is arith a holds iff the toplevel function symbol of a is any
of the function symbols interpreted in the theory of arithmetic.

val term_is_arith : term -> bool

term is arith a holds if the toplevel symbol of a is interpreted in linear arithmetic.

val term_mk_num : q -> term

term mk num q constructs a numeral term for representing the rational q.

val term_mk_multq : q -> term -> term

term mk multq q a constructs a term for representing the term a multiplied by q. If
a is in sum-of-product form, then so is term mk multq q a.

val term_mk_add : term -> term -> term

term mk add a b constructs a term for representing the sum of a and b. If both a

and b are in sum-of-product form, then so is term mk add a b.

val term_mk_addl : term list -> term
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Iteration of binary addition

• term mk addl [] is Ics.term mk num(),

• term mk addl [a] is a, and

• term mk addl (a :: al) is term mk add a (term mk addl al).

val term_mk_sub : term -> term -> term

term mk sub a b represents the difference a - b. If both a and b are in
sum-of-product form, then so is the result.

val term_mk_unary_minus : term -> term

term mk unary minus a represents the negation of a. If a is in sum-of-product form,
then so is the result.

Tuple terms. Tuple terms in normal form do not contain (applicable) projections on
tuples.

val term_mk_tuple : term list -> term

term mk tuple [a1;...;an] constructs tuple term for respresenting the tuple
(a1,...,an). The result is in tuple normal form, when all ai are in tuple normal
form

val term_mk_proj : int -> term -> term

term mk proj i a constructs, for 0 <= i < n, a term for representing the i-th
projection of an n-tuple. If a is in tuple normal form, then so is the result.

Bitvector terms are built up from bitvector constants, concatenation of two bitvectors,
extraction of a contiguous subrange from a bitvector, and logical bitwise operations. Each
bitvector term has a nonnegative width associated with it, and bits in a bitvector of width
n are addressed from 0 to n-1 in increasing order from left-to-right. All bitvector terms are
in concatenation normal form, that is, a left-associative concatenation of

• terms uninterpreted in the bitvector theory

• bitvector constants (with adjacent constants merged)

• single extractions from uninterpreted terms in this theory

• bitvector BDDs, which are BDDs with nodes consisting of one of the above classes of
terms.

The constructors below all construct concatenation normal forms, whenever their argu-
ments are in this form.

val term_mk_bvconst : string -> term
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term mk bvconst str constructs a bitvector constant.

val term_mk_bvsub : int * int * int -> term -> term

term mk bvsub i j n a constructs, for 0 <= i <= j < n a term for representing
the extraction of the j-i+1 bits from position i through j in a term of width n.

val term_mk_bvconc : int * int -> term -> term -> term

term mk bvconc n m a b constructs the concatenation a ++ b of bitvector terms a
of width n with b of width m.

Boolean Constants. are true and false.

val term_mk_true : unit -> term

The propositional constant term mk true() is encoded as the bitvector constant of
width 1 with a 1 at position 0.

val term_mk_false : unit -> term

The propositional constant term mk false() is encoded as the bitvector constant of
width 1 with a 0 at position 0.

val term_is_true : term -> bool

term is true a holds iff a is term equal to term mk true().

val term_is_false : term -> bool

term is false a holds iff a is term equal to term mk false().

Coproducts consist of

• injections inj n

• outjections out n.

val term_mk_inj : int -> term -> term

term mk inj n a constructs a term for n-ary injection.

val term_mk_out : int -> term -> term

term mk out n a constructs a term for n-ary outjection.

Array terms are built up from
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• constant arrays

• updates of arrays

• lookup of arrays.

val term_mk_create : term -> term

term mk create a represents an array with elements a.

val term_mk_update : term -> term -> term -> term

term mk update a i x represent an array a updated at position i with value x.

val term_mk_select : term -> term -> term

term mk select a j represents the value of array a at position j.

Nonlinear terms are sum-of-products with power products a1^n1 * ... an^nk with
ai terms and ni integers at uninterpreted positions.

val term_mk_mult : term -> term -> term

term mk mult a b constructs a nonlinear term for representing the multiplication of
a and b.

val term_mk_multl : term list -> term

term mk multl [a1;...;an] constructs a nonlinear term for representing the
multiplication a1 * ... * an.

Function application

val term_mk_apply : term -> term -> term

term mk apply a b represents the application of a, viewed as a function, to the
argument b.

type terms

Representation of a set of terms.

val terms_of_list : term list -> terms

Constructing a set of terms from a list of terms.

val terms_to_list : terms -> term list

Converting a set of terms into a list of terms.
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Atoms

type atom

An atom is either

• the trivially true atom atom mk true,

• the unsatisfiable atom mk false,

• an equality atom atom mk equal a b,

• a disequality atom atom mk diseq a b, or

• a constraint atom atom mk in a c, which constrains a to be interpreted over the
domain D(c) associated with the constraint c of type Ics.cnstrnt.

val atom_pp : atom -> unit

Pretty-printing an atom to stdout.

val atom_of_string : string -> atom

Parsing a string to obtain an atom.

val atom_to_string : atom -> string

Printing an atom to a string.

val atom_mk_true : unit -> atom

Constructing the trivially true atom.

val atom_mk_false : unit -> atom

Constructing an unsatisfiable atom.

val atom_mk_equal : term -> term -> atom

atom mk equal a b constructs an atom for representing the equality between a and b.

val atom_mk_diseq : term -> term -> atom

atom mk diseq a b constructs an atom for representing the disequality of a and b.

val atom_mk_le : term -> term -> atom

atom mk le a b constructs an atom for representing a <= b.

val atom_mk_lt : term -> term -> atom

atom mk lt a b constructs an atom for representing a < b.

val atom_mk_ge : term -> term -> atom
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atom mk ge a b constructs an atom for representing a >= b.

val atom_mk_gt : term -> term -> atom

atom mk gt a b constructs an atom for representing a > b.

val atom_negate : atom -> atom

Constructs the negation of an atom.

Justifications

type justification

A justification is either

• a tag Unjustified or

• a set of context atoms.

val justification_pp : justification -> unit

Print a justification to stdout.

val justification_to_axioms : justification -> atom list

Transform a justification into a list of atoms. These atoms are the axioms of a proof
represented by the justication. Notice, that such a list is not necesarily minimal.

Processing

type context

A logical context represents a conjunction of atoms.

val context_pp : context -> unit

Pretty-printing a context to standard output.

val context_ctxt_pp : context -> unit

Pretty-printing the logical context in a way that can be read in again by the parser.

val context_eq : context -> context -> bool

context eq s1 s2 is a constant-time predicate for testing for identity of two states.
Thus, whenever this predicate holds, its corresponding contexts are logically
equivalent.

val context_ctxt_of : context -> atom list

context ctxt of s returns the logical context of s as a set of atoms.
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val context_find :

th -> context -> Term.t -> Term.t * justification

find th s x is a if x = a is in the solution set for theory th in s; otherwise, the
result is just x.

val context_inv : th -> context -> Term.t -> Term.t

inv th s a is x if there is x = a in the solution set for theory th; otherwise
Not found is raised.

val context_use : th -> context -> Term.t -> Term.t list

use th s x consists of the set of all term variables y such that y = a in s, and x is a
variable a.

val context_empty : unit -> context

context empty() represents the empty logical context.

type status

Inhabitants of type status are used as return values for Ics.process[4]. There are
three possible outcomes.

• Redundant implies the argument a in Ics.process[4]s a is valid in context s.

• Inconsistent implies the argument a conjoined with s in Ics.process[4]s a is
inconsistent.

• Consistent neither a redundancy nor an inconsistency could be detected.

val is_consistent : status -> bool

If st is the result of process ctxt atm, then is consistent st holds if atm has not
been shown to be valid in ctxt and if atm conjoined with ctxt has not been shown to
be unsatisfiable. Notice that, despite the name of this function, this does not
necessarily imply that ctxt extended with atm is indeed satisfiable, since process

does not perform all the necessary case splits for some of the nonconvex theories such
as integers. Also, the support for nonlinear arithmetic is incomplete. Therefore, one
can only be sure that a context is indeed satisfiable by explicitly constructing a
model.

val is_redundant : status -> bool

If st is the result of process ctxt atm, then is redundant st holds if atm could be
shown to be valid in ctxt.

val is_inconsistent : status -> bool
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If st is the result of process ctxt atm, then is inconsistent st holds if atm
conjoined with ctxt is inconsistent.

val d_consistent : status -> context

In case is consistent st holds and st is the result of process ctxt atm,
d consistent st returns the extended context for ctxt conjoined with atm.

val d_redundant : status -> justification

In case is redundant st and st is the result of process ctxt atm, then
d redundant st returns a justification rho for the fact that atm is valid in context
ctxt.

val d_inconsistent : status -> justification

In case is inconsistent st and st is the result of process ctxt atm, then
d inconsistent st returns a justification rho for the fact that atm conjoined with
the context ctxt is unsatisfiable.

val process : context -> atom -> status

The operation process s a adds a new atom a to a logical context s. The codomain
of this function is of type status, elements of which represent the three possible
outcomes of processing an atom

• the atom a could be demonstrated to be inconsistent in s. In this case,
Ics.is inconsistent[4] holds of the result.

• the atom a could be demonstrated to be derivable in the context s. In this case,
Ics.is redundant[4] holds.

• Neither of the above holds. In this case, a modified context for representing the
context of s conjoined with a is obtained using the destructor
Ics.d consistent[4].

Notice that a result res with Ics.is consistent[4](res) does not necessarily imply
that atom a is indeed satisfiable, since the theory of ICS is indeed undecidable.
Moreover, ICS includes a number of nonconvex theories, which requires case-splitting
for completeness. process does not perform these case-splits in order to keep
worst-case runtimes polynomial (with the notable exception of canonization of logical
bitwise operators). Instead, it is in the responsibility of the application programmer
to perform these splits; see also Ics.split[4].

val split : context -> atom list

Suggested case splits.

val can : context -> term -> term * justification

Given a logical context s and an atom a, can s a computes a semicanonical form of
a in s, that is,

• if a holds in s it returns Atom.True,
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• if the negation of a holds in s then it returns Atom.False, and, otherwise,

• an equivalent normalized atom built up only from variables is returned.

val dom : context -> term -> dom * justification

Given a logical context s and a term a, cnstrnt s a computes an arithmetic
constraint for a in s using constraint information in s and abstraction interval
interpretation. If no such constraint can be deduced, None is returned.

Propositional logic

type prop

Representation of propositional formulas with propositional variables and atoms as
literals. A propositional formual is either

• one of the propositional constants tt, ff

• a propositional variable x,

• a literal l with l an atom (atoms are closed under negation),

• a conjunction p1 & ... & pn,

• a disjunction p1 | ... | pn,

• a negation ~p.

val prop_pp : prop -> unit

Printing a propositional formula.

val prop_of_string : string -> prop

Parsing a string to obtain a propositional formula. The syntax of propositional
formulas is roughly given by the grammar above, and brackets [] are used for
grouping. For details of the grammar see file parser.mly.

val prop_to_string : prop -> string

Pretty-print a propositional variable to a string.

val prop_mk_true : unit -> prop

The trivially true propositional formula.

val prop_mk_false : unit -> prop

The trivially false propositional formula.

val prop_mk_var : name -> prop

Constructing a propositional variable.

val prop_mk_poslit : atom -> prop

Injecting an atom into a propositional formula.

val prop_mk_neglit : atom -> prop
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Injecting a negated atom into a propositional formula.

val prop_mk_ite : prop -> prop -> prop -> prop

prop mk ite p q r constructs a propositional formula equivalent to prop mk disj

(prop mk conj p q) (prop mk conj (prop mk neg p) r).

val prop_mk_conj : prop list -> prop

prop mk conj [p1;...;pn] constructs a representation of the conjunction of p1 &

... & pn with the empty list [] equivalent to prop mk true().

val prop_mk_disj : prop list -> prop

prop mk disj p q constructs a representation of the disjunction of p and q.

val prop_mk_iff : prop -> prop -> prop

prop mk iff p q constructs a representation of the equivalence of p and q.

val prop_mk_neg : prop -> prop

prop mk neg p constructs a representation of the negation of p.

val prop_is_true : prop -> bool

Exactly one of the following recognizers is true for a propositional formula.

val prop_is_false : prop -> bool

val prop_is_var : prop -> bool

val prop_is_atom : prop -> bool

val prop_is_ite : prop -> bool

val prop_is_disj : prop -> bool

val prop_is_iff : prop -> bool

val prop_is_neg : prop -> bool

val prop_d_var : prop -> name

If the corresponding recognizer above holds, propositional formulas may be
destructured using the following.

val prop_d_atom : prop -> atom

val prop_d_ite : prop -> prop * prop * prop

val prop_d_disj : prop -> prop * prop

val prop_d_iff : prop -> prop * prop

val prop_d_neg : prop -> prop

type assignment
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Representation of assignments for propositional formulas.

val assignment_pp : assignment -> unit

Pretty-printing assignments.

val assignment_valuation : assignment -> (name * bool) list

Assignments to propositional variables.

val assignment_literals : assignment -> atom list

Assignment to nonpropositional literas.

val prop_sat : context -> prop -> assignment option

prop sat s p determines if the propositional formula p is satisfiable in context s. It
returns

• None, if p is unsatisfiable,

• Some(ms), if p is satisfiable; in this case, ms implicitly represents a set of
candidate models.

Imperative states

An imperative state istate does not only include a logical context of type state but
also a symbol table and input and output channels. A global istate variable is manipulated
and destructively updated by commands.

val init : int -> unit

Initialization. init n sets the verbose level to n. The higher the verbose level, the
more trace information is printed to stderr (see below). There are no trace messages
for n = 0. In addition, initialization makes the system to raise the Sys.Break

exception upon user interrupt ^C^C. The init function should be called before using
any other function in this API.

val set_outchannel : outchannel -> unit

val set_inchannel : inchannel -> unit

val set_prompt : string -> unit

val set_eot : string -> unit

val cmd_rep : unit -> unit

cmd rep reads a command from the current input channel according to the grammar
for the nonterminal commandeof in module Parser (see its specification in file
parser.mly, the current internal istate accordingly, and outputs the result to the
current output channel.

val cmd_batch : inchannel -> int

Similar to Ics.cmd rep[4], but syntax error messages contain line numbers, and
processing is aborted after state is unsatisfiable.
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val flush : unit -> unit

Flush currently active output channel.

Controls

val reset : unit -> unit

reset() clears all the global tables. This does not only include the current context
but also internal tables used for hash-consing and memoization purposes.

val gc : unit -> unit

gc() triggers a full major collection of ocaml’s garbage collector.

val sleep : int -> unit

Sleeping for a number of seconds.

Tracing

Rudimentary control on trace messages, which are sent to stderr. These functions are
mainly included for debugging purposes, and are usually not being used by the application
programmer.

val trace_reset : unit -> unit

trace reset() disables all tracing.

val trace_add : string -> unit

trace add str enables tracing of functions associated with trace level str. For
example, trace add "rule" traces the calls for processing all generated equalities,
disequalities, and constraints.

val trace_remove : string -> unit

trace remove str removes str from the set of active trace levels

val trace_get : unit -> string list

trace get() returns the set of active trace levels.

Lists

val is_nil : ’a list -> bool

val cons : ’a -> ’a list -> ’a list

val head : ’a list -> ’a

val tail : ’a list -> ’a list

Pairs

val pair : ’a -> ’b -> ’a * ’b
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pair a b builds a pair (a,b).

val fst : ’a * ’b -> ’a

fst p returns b if p is equal to some pair a .

val snd : ’a * ’b -> ’b

snd p returns b if p is equal to some pair b.

Triples

val triple : ’a -> ’b -> ’c -> ’a * ’b * ’c

val fst_of_triple : ’a * ’b * ’c -> ’a

val snd_of_triple : ’a * ’b * ’c -> ’b

val third_of_triple : ’a * ’b * ’c -> ’c

Quadruples

val fst_of_quadruple : ’a * ’b * ’c * ’d -> ’a

val snd_of_quadruple : ’a * ’b * ’c * ’d -> ’b

val third_of_quadruple : ’a * ’b * ’c * ’d -> ’c

val fourth_of_quadruple : ’a * ’b * ’c * ’d -> ’d

Option types

An element of type ’a option either satisfies the recognizer is some or is none. In
case, is some holds, a value of type ’a can be obtained by value of.

val is_some : ’a option -> bool

val is_none : ’a option -> bool

val value_of : ’a option -> ’a

5 Calling ICS from Ocaml

The following Ocaml program tries to asserts the trivial atom 5 <= 4 to the empty context
using the process function in the interface and outputs the result to standard output.

open Ics

let main () =

let c = context_empty () in

let a =

atom_mk_le

(term_mk_num (num_of_int 5)) (term_mk_num (num_of_int 4)) in

let s = process c a in
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begin if is_consistent s then

print_string "Consistent"

else if is_inconsistent s then

print_string "Inconsistent"

else if is_redundant s then

print_string "Redundant"

else

failwith "Error"

end;

print_newline ();

Pervasives.flush Pervasives.stdout ;;

main () ;;

Given that this program is stored in file test.ml, it is compiled with

$ ocamlopt -I <icspath>/lib/i686-pc-linux-gnu/ -c test.ml

$ ocamlopt -I <icspath>/lib/i686-pc-linux-gnu/ -o test unix.cmxa ics.cmxa test.cmx

So the only things needed are to give the Ocaml compiler the path to the library -I <path>

and the linker the ICS library itself plus unix.cmxa as the Ocaml library unix is used by ICS.
Notice that libraries for different platforms are distributed with ICS, and in the above we
assume the i686-pc-linux-gnu architecture. The architecture name can also be obtained
using config.guess.

Now, the test program can be run to get the not too unexpected result.

$ ./test

Inconsistent

6 Calling ICS from C/C++

The API for the C programming language is generated automatically from the Ocaml API
described above. The generated C file can be found in

./obj/$ARCH/ics_stub.c

This file contains a C function declaration ics xxx for each of the interface function xxx

described above. For example, the definition of the function ics mk var for the mk var

constructor is given by the following C code.

value* ics_mk_var(char* x1) {

value* ics_mk_var(char* x1) {

value* r = malloc(sizeof(value));
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register_global_root(r);

*r = 1;

*r = callback_exn(*ics_mk_var_rv,copy_string(x1));

if (!Is_exception_result(*r)) { return r; };

ocaml_error("ics_mk_var",format_caml_exception(Extract_exception(*r)));

return (value*) 0;

}

These interface function translate C arguments to Ocaml values, call the Ocaml function,
and translate back the results. In addition, any Ocaml exceptions are caught and handled
by the ocaml error function. Curried signatures of the Ocaml functions are uncurried, and
list and tuple arguments must be build using the constructors of the interface. The handling
of exceptions is determined by the function ocaml error, which has to be provided by the
application programmer.

Calls to the C functions in the interface must obey the typing restrictions of Ocaml,
otherwise the result is undefined (typically, the program crashes). For example, the function
ics term cmp may only be called with two arguments representing term values, since the
signature of this function in the interface is given as term -> term -> int.

When using C++ the following declarations are needed to use ICS. First, declare a function
ics caml startup before including ics.h.1

extern "C" {

void ics_caml_startup(int full, char** argv);

#include<ics.h>

}

Second, an application-dependent ics error function such as the one below has to be pro-
vided.

extern "C" {

void ics_error(char * funname, char * message) {

cerr << "ICS error at " << funname << " : " << message << endl;

exit(1);

}

}

Third, before calling any ICS functionality, call ics caml startup.

int main(int argc, char ** argv) {

ics_caml_startup(1, argv);

...

}

1Within the extern "C" directive, the C++ compiler does not rename functions.
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#include<iostream.h>

extern "C" {

void ics_caml_startup(int full, char** argv);

#include<ics.h>

}

int main(int argc, char ** argv) {

ics_caml_startup(1, argv);

cout << "ICS: Hello World\n";

}

extern "C" {

void ics_error(char * funname, char * message) {

cerr << "ICS error at " << funname << " : " << message << endl;

exit(1);

}}

Figure 1: Minimal setup for calling ICS.

A minimal C++ program for calling ICS can be found in Figure 1. If this program is stored
in a file hello-ics.cpp, then it can be compiled using

g++ hello-ics.cpp -lics

Notice that LD LIBRARY PATH variable should be such that the ICS library libics.a can be
found in the linking stage.

Appendix A contains an implementation of a bounded model checker for the Bakery
mutual exclusion protocol in C++. Assuming that the name of the corresponding file is
bakery.cpp, then this program can be compiled on a Linux platform using the static library
libics.a with the following command:

g++ -o bakery -L $ICSPATH/lib/i686-pc-linux-gnu/ -I $ICSPATH/obj/i686-pc-linux-gnu/ -lics bakery.cpp

Here, ICSPATH is assumed to be set to the the ICS home directory which contains ...

7 Calling ICS from Lisp

The Lisp API for ICS builds on the C interface and uses the foreign function interface of
Allegro Common Lisp 6.0. For each function xxx in the API a foreign function declaration
ics xxx is generated. In order to use ICS in Lisp, the shared object file libicsall.so has
to be loaded followed by loading the foreign function interface.
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> (load "./lib/i686-pc-linux-gnu/libicsall.so")

; Foreign loading lib/i686-pc-linux-gnu/libicsall.so.

t

> (load "./include/ics.lisp")

t

Now, all the functions in the ICS interface are available in Lisp. It is the Lisp program-
mer’s responsibility to call the ICS functions in a type-correct way. Calls to ICS func-
tions violating the Ocaml type discipline may have fatal consequences for the Lisp image.
The ICS data structures can be garbage collection using the Lisp garbage collector us-
ing finalization on wrappers of ICS pointers. In the following, the Allegro Lisp function
excl:schedule-finalization directs the Lisp garbage collector to call wrap-free! when
garbage collecting the wrapper, and the function wrap-free! calls the ICS deregistration
function on the unwrapped ICS structure.

(defstruct (wrap

(:predicate wrap?)

(:constructor make-wrap (address))

(:print-function

(lambda (p s k)

(declare (ignore k))

(format t "<#wrap: ~a>" (wrap-address p)))))

address)

(defun wrap-finalize! (w)

(excl:schedule-finalization w ’wrap-free!))

(defun wrap-free! (w)

(ics_deregister (unwrap w)))

In this way it is ensured that the Lisp and the Ocaml garbage collector cooperate as long as
every ICS wrapper has been finalized. A typical construction is demonstrated below.

(defun ics-empty-state ()

(let ((empty (make-wrap (ics_context_empty))))

(wrap-finalize! empty)

empty))

The empty ICS context is obtained using ics context empty, and the corresponding Lisp
wrapper empty is finalized before being returned by this function.

ICS errors and exceptions are being handled through the Lisp exception mechanism, and
ICS functions are interruptable using Ctrl-C Ctrl-C.
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A Bakery Mutual Exclusion Protocol

The following program realizes a symbolic simulator for a simplified Bakery mutual exclusion
protocol using the ICS interface to C.

/***

PURPOSE

NOTES

HISTORY

demoura - Aug 8, 2002: Created.

Comiling using static library:

g++ -o bakery -L../lib/i686-pc-linux-gnu -I../obj/i686-pc-linux-gnu -lics bakery.cpp

g++ -o bakery -L../lib/sparc-sun-solaris2.7 -I../obj/sparc-sun-solaris2.7 -lics -lsocket bakery.cpp

g++ -o bakery -L../lib/powerpc-apple-darwin6.8 -I../obj/powerpc-apple-darwin6.8 -lics bakery.cpp

g++-2 -o bakery -L../lib/i686-pc-cygwin -I../obj/i686-pc-cygwin -lics bakery.cpp

Compiling using dynamic library:

g++ -o bakery -L ../lib/i686-pc-linux-gnu/ \

-I ../obj/i686-pc-linux-gnu/ \

-licsall -lgmp bakery.cpp

***/

#include<stdio.h>

#include<stdlib.h>

#include<iostream.h>

extern "C" {

void ics_caml_startup(int full, char** argv);

#include<ics.h>

}

extern "C" {

void ics_deregister(value* r);

}
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#define MAX_ARRAY_SIZE 1024

int CALLS_TO_ICS = 0;

value * y1_ge_0;

value * y2_ge_0;

value * ny1_eq_y1[MAX_ARRAY_SIZE];

value * ny2_eq_y2[MAX_ARRAY_SIZE];

value * ny1_eq_y2_plus_1[MAX_ARRAY_SIZE];

value * ny2_eq_y1_plus_1[MAX_ARRAY_SIZE];

value * y1_eq_0[MAX_ARRAY_SIZE];

value * y2_eq_0[MAX_ARRAY_SIZE];

value * y1_lt_y2[MAX_ARRAY_SIZE];

value * y2_lt_y1[MAX_ARRAY_SIZE];

#define BUFFER_SIZE 8192

void init_arrays(int max_depth)

{

static char buffer[BUFFER_SIZE];

y1_ge_0 = ics_atom_of_string("y10 >= 0");

y2_ge_0 = ics_atom_of_string("y20 >= 0");

for(int i = 0; i <= max_depth; i++) {

sprintf(buffer, "y1%d = y1%d", i+1, i);

ny1_eq_y1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = y2%d", i+1, i);

ny2_eq_y2[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d = y2%d + 1", i+1, i);

ny1_eq_y2_plus_1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = y1%d + 1", i+1, i);

ny2_eq_y1_plus_1[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d = 0", i);

y1_eq_0[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y2%d = 0", i);

y2_eq_0[i] = ics_atom_of_string(buffer);

sprintf(buffer, "y1%d < y2%d", i,i);

y1_lt_y2[i] = ics_atom_of_string(buffer);
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sprintf(buffer, "y2%d < y1%d", i,i);

y2_lt_y1[i] = ics_atom_of_string(buffer);

}

}

bool process(value * state, value ** next, bool d_prev, value * atom) {

CALLS_TO_ICS++;

value * status = ics_process(state, atom);

bool result;

if (ics_is_consistent(status)) {

*next = ics_d_consistent(status);

result = true;

}

else if (ics_is_redundant(status)) {

*next = state;

result = true;

}

else if (ics_is_inconsistent(status)) {

result = false;

}

if (d_prev) {

ics_deregister(state);

free(state);

}

ics_deregister(status);

free(status);

return result;

}

int MAX_DEPTH = 0;

bool printed = false;

#define ERROR() { if (!printed) { ics_context_pp(state); printed = true; } cout << endl; cout << "pc1 = " << pc1 << ", pc2 = " << pc2 << ", at depth = " << depth << endl; return 0;

}

int bakery_step(int pc1, int pc2, int depth, value * state)

{

if (depth >= MAX_DEPTH)

return 1;

if (pc1 == 3 && pc2 == 3) {
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cout << "Error detected.... pc1 = "

<< pc1

<< ", pc2 = "

<< pc2

<< " at depth = "

<< depth

<< endl;

return 0;

}

value * new_state;

switch (pc1) {

case 1:

if(!process(state, &new_state, 0, ny1_eq_y2_plus_1[depth]))

break;

if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;

if (!bakery_step(2, pc2, depth+1, new_state)) {

ERROR();

}

break;

case 2:

if(!process(state, &new_state, 0, ny1_eq_y1[depth]))

break;

if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;

{

value * saved_state = new_state;

if (process(saved_state, &new_state, 0, y2_eq_0[depth]) &&

!bakery_step(3, pc2, depth+1, new_state)) {

ERROR();

}

if (process(saved_state, &new_state, 0, y1_lt_y2[depth]) &&

!bakery_step(3, pc2, depth+1, new_state)) {

ERROR();

}

ics_deregister(saved_state);

free(saved_state);

}

break;

case 3:

if (!process(state, &new_state, 0, y1_eq_0[depth+1]))

break;
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if (!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;

if (!bakery_step(1, pc2, depth+1, new_state)) {

ERROR();

}

break;

}

switch(pc2) {

case 1:

if(!process(state, &new_state, 0, ny2_eq_y1_plus_1[depth]))

break;

if(!process(new_state, &new_state, 1, ny1_eq_y1[depth]))

break;

if (!bakery_step(pc1, 2, depth+1, new_state)) {

ERROR();

}

break;

case 2:

if(!process(state, &new_state, 0, ny1_eq_y1[depth]))

break;

if(!process(new_state, &new_state, 1, ny2_eq_y2[depth]))

break;

{

value * saved_state = new_state;

if (process(saved_state, &new_state, 0, y1_eq_0[depth]) &&

!bakery_step(pc1, 3, depth+1, new_state)) {

ERROR();

}

if (process(saved_state, &new_state, 0, y2_lt_y1[depth]) &&

!bakery_step(pc1, 3, depth+1, new_state)) {

ERROR();

}

ics_deregister(saved_state);

free(saved_state);

}

break;

case 3:

if (!process(state, &new_state, 0, y2_eq_0[depth+1]))

break;

if (!process(new_state, &new_state, 1, ny1_eq_y1[depth]))

break;

if (!bakery_step(pc1, 1, depth+1, new_state)) {

ERROR();
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}

break;

}

// ics_deregister(state);

// free(state);

return 1;

}

int main(int argc, char ** argv)

{

ics_caml_startup(1, argv);

cout << "depth = " << argv[1] << endl;

int depth = atoi(argv[1]);

cout << "ICS Started...\n";

init_arrays(depth);

cout << "Atoms initialized...\n";

value * ini_state = ics_context_empty();

process(ini_state, &ini_state, 0, y1_ge_0);

process(ini_state, &ini_state, 0, y2_ge_0);

MAX_DEPTH = depth;

if (!bakery_step(1, 1, 0, ini_state))

cout << "ERROR...." << endl;

cout << "calls to ICS = " << CALLS_TO_ICS << endl;

return 0;

}

extern "C" {

void ics_error(char * funname, char * message) {

cerr << "ICS error at "

<< funname

<< " : "

<< message

<< endl;

exit(1);

}
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