Module Combine.E


module E: sig  end
Combination of individual equality sets.


type t
Combined equality set.

val u_of : t -> U.S.t
Projections to individual equality sets.
Parameters:
s : t
val la_of : t -> La.S.t
Parameters:
s : t
val nl_of : t -> Solution.Set.t
Parameters:
s : t
val p_of : t -> Solution.Set.t
Parameters:
s : t
val cop_of : t -> Solution.Set.t
Parameters:
s : t
val cl_of : t -> Solution.Set.t
Parameters:
s : t
val arr_of : t -> Solution.Set.t
Parameters:
s : t
val set_of : t -> Solution.Set.t
Parameters:
s : t
val empty : t
The empty equality configuration.
val copy : t -> t
Parameters:
s : t
val is_empty : t -> bool
Succeeds if all individual equality sets are empty.
Parameters:
s : t
val eq : t -> t -> bool
Identity test for two equality sets. Failure does imply that the argument equality sets are not logically equivalent.
Parameters:
s1 : t
s2 : t
val pp : t Pretty.printer
Pretty-printing of combined equality set.
Parameters:
fmt : Format.formatter
s : t
val pp_i : Th.t -> t Pretty.printer
Pretty-printing of an individual equality set.
Parameters:
i : Th.t
fmt : Format.formatter
s : t
val find : t * Partition.t -> Th.t -> Jst.Eqtrans.t
find s th x is a if x = a is in the solution set for theory th in s; otherwise, the result is just x.
Parameters:
(s,p) : t * Partition.t
? : Th.t
val inv : t * Partition.t -> Jst.Eqtrans.t
inv s a is x if there is x = a in the solution set for theory th; otherwise Not_found is raised.
Parameters:
(s,p) : t * Partition.t
a : Term.t
val dep : Th.t -> t -> Term.t -> Term.Var.Set.t
dep i s x returns a set ys of variables such that y in ys iff there is an x = a in s with y a subterm of a.
Parameters:
i : Th.t
s : t
? : Term.t
val diff : t -> t -> t
diff s1 s2 returns the equality set s such that an equality e is in s iff if it is in s1 but not in s2.
Parameters:
s1 : t
s2 : t