module Infsys: sig end
A
congruence closure state represents the conjunction of
a set of equalities
x = f(x1,...,xn)
with
x
,
xi
term variables and
f
an uninterpreted function symbol. This set of equalities is
- injective in that
x = a
and y = a
implies x = y
, and
- functional in that
x = a
and x = b
implies a = b
.
type e
val current : unit -> e
val initialize : e -> unit
Intitialize inference system with equality set.
val finalize : unit -> e
Retrieve modified equality set.
val abstract : Term.t -> unit
(g[a]; e; p)
==>
(g[x]; e, x = a; p)
with
a
a nonvariable term,
a
an i
-pure term,
- and
x
fresh.
val merge : Fact.Equal.t -> unit
(g, a = b; e; p)
==>
(g; e'; p')
with
a
, b
i
-pure,
|= e', p' <=> |= e, a = b, p
- if
e' |= x = y
then p' |= x = y
.
val propagate : Fact.Equal.t -> unit
(g, e; p)
==>
(g; e'; p)
with
e |= x = y
,
- not
p |= x = y
,
|= e, p <=> |= e', p'
val dismerge : Fact.Diseq.t -> unit
(g, a <> a; e; p)
==> (g; e'; p')
with a
, b
i
-pure, |= e', p' <=> |= e, p, a <> b
.
val propagate_diseq : Fact.Diseq.t -> unit
(g; e; p)
==>
(g; e'; p')
with
p' |= x <> y
|= e', p' <=> |= e, p
.
val branch : unit -> unit
(g; e; p)
==>
(g, c1; e; p) | ... | (g, cn; e; p)
with
e, p |= c1 \/ ... \/ cn
- not
e, p |= ci
val normalize : unit -> unit
(g; e; p)
==> (g'; e'; p')
where source and target configuration are equivalent.